A simulation-based evaluation of machine learning models for clinical decision support: application and analysis using hospital readmission
Abstract The interest in applying machine learning in healthcare has grown rapidly in recent years. Most predictive algorithms requiring pathway implementations are evaluated using metrics focused on predictive performance, such as the c statistic. However, these metrics are of limited clinical valu...
Enregistré dans:
Auteurs principaux: | Velibor V. Mišić, Kumar Rajaram, Eilon Gabel |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ff0032ece6414e12b6d1579726ea9ab3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A hierarchical expert-guided machine learning framework for clinical decision support systems: an application to traumatic brain injury prognostication
par: Negar Farzaneh, et autres
Publié: (2021) -
Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set
par: Ira S. Hofer, et autres
Publié: (2020) -
A machine learning based two-stage clinical decision support system for predicting patients’ discontinuation from opioid use disorder treatment: retrospective observational study
par: Md Mahmudul Hasan, et autres
Publié: (2021) -
An overview of clinical decision support systems: benefits, risks, and strategies for success
par: Reed T. Sutton, et autres
Publié: (2020) -
Statistical uncertainty quantification to augment clinical decision support: a first implementation in sleep medicine
par: Dae Y. Kang, et autres
Publié: (2021)