A simulation-based evaluation of machine learning models for clinical decision support: application and analysis using hospital readmission
Abstract The interest in applying machine learning in healthcare has grown rapidly in recent years. Most predictive algorithms requiring pathway implementations are evaluated using metrics focused on predictive performance, such as the c statistic. However, these metrics are of limited clinical valu...
Guardado en:
Autores principales: | Velibor V. Mišić, Kumar Rajaram, Eilon Gabel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff0032ece6414e12b6d1579726ea9ab3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A hierarchical expert-guided machine learning framework for clinical decision support systems: an application to traumatic brain injury prognostication
por: Negar Farzaneh, et al.
Publicado: (2021) -
Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set
por: Ira S. Hofer, et al.
Publicado: (2020) -
A machine learning based two-stage clinical decision support system for predicting patients’ discontinuation from opioid use disorder treatment: retrospective observational study
por: Md Mahmudul Hasan, et al.
Publicado: (2021) -
An overview of clinical decision support systems: benefits, risks, and strategies for success
por: Reed T. Sutton, et al.
Publicado: (2020) -
Statistical uncertainty quantification to augment clinical decision support: a first implementation in sleep medicine
por: Dae Y. Kang, et al.
Publicado: (2021)