Towards exact molecular dynamics simulations with machine-learned force fields

Simultaneous accurate and efficient prediction of molecular properties relies on combined quantum mechanics and machine learning approaches. Here the authors develop a flexible machine-learning force-field with high-level accuracy for molecular dynamics simulations.

Guardado en:
Detalles Bibliográficos
Autores principales: Stefan Chmiela, Huziel E. Sauceda, Klaus-Robert Müller, Alexandre Tkatchenko
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/ff08188a278c46cf94786ba5ea9f5f6f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ff08188a278c46cf94786ba5ea9f5f6f
record_format dspace
spelling oai:doaj.org-article:ff08188a278c46cf94786ba5ea9f5f6f2021-12-02T16:56:59ZTowards exact molecular dynamics simulations with machine-learned force fields10.1038/s41467-018-06169-22041-1723https://doaj.org/article/ff08188a278c46cf94786ba5ea9f5f6f2018-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-06169-2https://doaj.org/toc/2041-1723Simultaneous accurate and efficient prediction of molecular properties relies on combined quantum mechanics and machine learning approaches. Here the authors develop a flexible machine-learning force-field with high-level accuracy for molecular dynamics simulations.Stefan ChmielaHuziel E. SaucedaKlaus-Robert MüllerAlexandre TkatchenkoNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Stefan Chmiela
Huziel E. Sauceda
Klaus-Robert Müller
Alexandre Tkatchenko
Towards exact molecular dynamics simulations with machine-learned force fields
description Simultaneous accurate and efficient prediction of molecular properties relies on combined quantum mechanics and machine learning approaches. Here the authors develop a flexible machine-learning force-field with high-level accuracy for molecular dynamics simulations.
format article
author Stefan Chmiela
Huziel E. Sauceda
Klaus-Robert Müller
Alexandre Tkatchenko
author_facet Stefan Chmiela
Huziel E. Sauceda
Klaus-Robert Müller
Alexandre Tkatchenko
author_sort Stefan Chmiela
title Towards exact molecular dynamics simulations with machine-learned force fields
title_short Towards exact molecular dynamics simulations with machine-learned force fields
title_full Towards exact molecular dynamics simulations with machine-learned force fields
title_fullStr Towards exact molecular dynamics simulations with machine-learned force fields
title_full_unstemmed Towards exact molecular dynamics simulations with machine-learned force fields
title_sort towards exact molecular dynamics simulations with machine-learned force fields
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/ff08188a278c46cf94786ba5ea9f5f6f
work_keys_str_mv AT stefanchmiela towardsexactmoleculardynamicssimulationswithmachinelearnedforcefields
AT huzielesauceda towardsexactmoleculardynamicssimulationswithmachinelearnedforcefields
AT klausrobertmuller towardsexactmoleculardynamicssimulationswithmachinelearnedforcefields
AT alexandretkatchenko towardsexactmoleculardynamicssimulationswithmachinelearnedforcefields
_version_ 1718382660367155200