Towards exact molecular dynamics simulations with machine-learned force fields
Simultaneous accurate and efficient prediction of molecular properties relies on combined quantum mechanics and machine learning approaches. Here the authors develop a flexible machine-learning force-field with high-level accuracy for molecular dynamics simulations.
Enregistré dans:
Auteurs principaux: | Stefan Chmiela, Huziel E. Sauceda, Klaus-Robert Müller, Alexandre Tkatchenko |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ff08188a278c46cf94786ba5ea9f5f6f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature
par: Huziel E. Sauceda, et autres
Publié: (2021) -
Nanocomposite of Fullerenes and Natural Rubbers: MARTINI Force Field Molecular Dynamics Simulations
par: Jiramate Kitjanon, et autres
Publié: (2021) -
Quantum-chemical insights from deep tensor neural networks
par: Kristof T. Schütt, et autres
Publié: (2017) -
Machine learning for chemical discovery
par: Alexandre Tkatchenko
Publié: (2020) -
Molecular dynamics simulations of forced unbending of integrin α(v)β₃.
par: Wei Chen, et autres
Publié: (2011)