Towards exact molecular dynamics simulations with machine-learned force fields
Simultaneous accurate and efficient prediction of molecular properties relies on combined quantum mechanics and machine learning approaches. Here the authors develop a flexible machine-learning force-field with high-level accuracy for molecular dynamics simulations.
Guardado en:
Autores principales: | Stefan Chmiela, Huziel E. Sauceda, Klaus-Robert Müller, Alexandre Tkatchenko |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff08188a278c46cf94786ba5ea9f5f6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature
por: Huziel E. Sauceda, et al.
Publicado: (2021) -
Nanocomposite of Fullerenes and Natural Rubbers: MARTINI Force Field Molecular Dynamics Simulations
por: Jiramate Kitjanon, et al.
Publicado: (2021) -
Quantum-chemical insights from deep tensor neural networks
por: Kristof T. Schütt, et al.
Publicado: (2017) -
Machine learning for chemical discovery
por: Alexandre Tkatchenko
Publicado: (2020) -
Molecular dynamics simulations of forced unbending of integrin α(v)β₃.
por: Wei Chen, et al.
Publicado: (2011)