Conditional immortalization of human B cells by CD40 ligation.
It is generally assumed that human differentiated cells have a limited life-span and proliferation capacity in vivo, and that genetic modifications are a prerequisite for their immortalization in vitro. Here we readdress this issue, studying the long-term proliferation potential of human B cells. It...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2008
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff0fccc34347455bb1c0e05213fd2ec2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | It is generally assumed that human differentiated cells have a limited life-span and proliferation capacity in vivo, and that genetic modifications are a prerequisite for their immortalization in vitro. Here we readdress this issue, studying the long-term proliferation potential of human B cells. It was shown earlier that human B cells from peripheral blood of healthy donors can be efficiently induced to proliferate for up to ten weeks in vitro by stimulating their receptor CD40 in the presence of interleukin-4. When we applied the same stimuli under conditions of modified cell number and culture size, we were surprised to find that our treatment induced B cells to proliferate throughout an observation period of presently up to 1650 days, representing more than 370 population doublings, which suggested that these B cells were immortalized in vitro. Long-term CD40-stimulated B cell cultures could be established from most healthy adult human donors. These B cells had a constant phenotype, were free from Epstein-Barr virus, and remained dependent on CD40 ligation. They had constitutive telomerase activity and stabilized telomere length. Moreover, they were susceptible to activation by Toll-like receptor 9 ligands, and could be used to expand antigen-specific cytotoxic T cells in vitro. Our results indicate that human somatic cells can evade senescence and be conditionally immortalized by external stimulation only, without a requirement for genetic manipulation or oncoviral infection. Conditionally immortalized human B cells are a new tool for immunotherapy and studies of B cell oncogenesis, activation, and function. |
---|