Developing a Method to Extract Building 3D Information from GF-7 Data

The three-dimensional (3D) information of buildings can describe the horizontal and vertical development of a city. The GaoFen-7 (GF-7) stereo-mapping satellite can provide multi-view and multi-spectral satellite images, which can clearly describe the fine spatial details within urban areas, while t...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Jingyuan Wang, Xinli Hu, Qingyan Meng, Linlin Zhang, Chengyi Wang, Xiangchen Liu, Maofan Zhao
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/ff15bf8f5b5b4974a7c81ff6f083b7d5
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:The three-dimensional (3D) information of buildings can describe the horizontal and vertical development of a city. The GaoFen-7 (GF-7) stereo-mapping satellite can provide multi-view and multi-spectral satellite images, which can clearly describe the fine spatial details within urban areas, while the feasibility of extracting building 3D information from GF-7 image remains understudied. This article establishes an automated method for extracting building footprints and height information from GF-7 satellite imagery. First, we propose a multi-stage attention U-Net (MSAU-Net) architecture for building footprint extraction from multi-spectral images. Then, we generate the point cloud from the multi-view image and construct normalized digital surface model (nDSM) to represent the height of off-terrain objects. Finally, the building height is extracted from the nDSM and combined with the results of building footprints to obtain building 3D information. We select Beijing as the study area to test the proposed method, and in order to verify the building extraction ability of MSAU-Net, we choose GF-7 self-annotated building dataset and a public dataset (WuHan University (WHU) Building Dataset) for model testing, while the accuracy is evaluated in detail through comparison with other models. The results are summarized as follows: (1) In terms of building footprint extraction, our method can achieve intersection-over-union indicators of 89.31% and 80.27% for the WHU Dataset and GF-7 self-annotated datasets, respectively; these values are higher than the results of other models. (2) The root mean square between the extracted building height and the reference building height is 5.41 m, and the mean absolute error is 3.39 m. In summary, our method could be useful for accurate and automatic 3D building information extraction from GF-7 satellite images, and have good application potential.