GLP-1 Inhibits High-Glucose-Induced Oxidative Injury of Vascular Endothelial Cells

Abstract The aim of this work was to evaluate the effects of glucagon-like peptide-1 (GLP-1) on high-glucose-induced oxidative stress and investigate the possible mechanisms underlying this process. We measured reactive oxygen species (ROS) production, cell apoptosis, the expression of NOX4 and its...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Quan Li, Yajun Lin, Shu Wang, Lina Zhang, Lixin Guo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ff1d0372db3c4ce8b14d24d2ba11d675
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The aim of this work was to evaluate the effects of glucagon-like peptide-1 (GLP-1) on high-glucose-induced oxidative stress and investigate the possible mechanisms underlying this process. We measured reactive oxygen species (ROS) production, cell apoptosis, the expression of NOX4 and its subunits, and p47phox translocation in human umbilical vein endothelial cells (HUVECs). An experimental type 2 diabetes model was induced using streptozotocin in male Sprague-Dawley rats. Fasting blood glucose (FBG), fasting insulin (FINS), total cholesterol (TC), triglycerides (TGs), and free fatty acid (FFA) were measured. Histomorphological analysis of the aorta was performed using hematoxylin-eosin staining. NOX4 and VCAM-1 expression in the aorta was measured. We found that high-glucose-induced ROS production and apoptosis were inhibited by GLP-1 treatment. High glucose caused upregulation of NOX4, p47phox, and Rac-1 and translocation of p47phox but had no effect on the cells pretreated with GLP-1. Furthermore, in the diabetic group, FBG, FINS, TG, TC, and FFA were increased, and NOX4 and VCAM-1 levels were also elevated. However, GLP-1 attenuated all these changes. GLP-1 ameliorated high-glucose-induced oxidative stress by inhibiting NOX4, p47phox, and Rac-1 expression and translocation of p47phox, suggesting its clinical usefulness in diabetic vascular complications.