Quasi-ideal Ehresmann transversals: The spined product structure

In any U-abundant semigroup with an Ehresmann transversal, two significant components R and L are introduced in this paper and described by Green’s ∼\sim -relations. Some interesting properties associated with R and L are explored and some equivalent conditions for the Ehresmann transversal to be a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kong Xiangjun, Wang Pei, Tang Jian
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/ff23030e4c784a018560449164a267bb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ff23030e4c784a018560449164a267bb
record_format dspace
spelling oai:doaj.org-article:ff23030e4c784a018560449164a267bb2021-12-05T14:10:52ZQuasi-ideal Ehresmann transversals: The spined product structure2391-545510.1515/math-2020-0071https://doaj.org/article/ff23030e4c784a018560449164a267bb2021-04-01T00:00:00Zhttps://doi.org/10.1515/math-2020-0071https://doaj.org/toc/2391-5455In any U-abundant semigroup with an Ehresmann transversal, two significant components R and L are introduced in this paper and described by Green’s ∼\sim -relations. Some interesting properties associated with R and L are explored and some equivalent conditions for the Ehresmann transversal to be a quasi-ideal are acquired. Finally, a spined product structure theorem is established for a U-abundant semigroup with a quasi-ideal Ehresmann transversal by means of R and L.Kong XiangjunWang PeiTang JianDe Gruyterarticleu-abundant semigroupehresmann transversalgreen’s∼-relationsquasi-idealspined product20m10MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 77-86 (2021)
institution DOAJ
collection DOAJ
language EN
topic u-abundant semigroup
ehresmann transversal
green’s∼-relations
quasi-ideal
spined product
20m10
Mathematics
QA1-939
spellingShingle u-abundant semigroup
ehresmann transversal
green’s∼-relations
quasi-ideal
spined product
20m10
Mathematics
QA1-939
Kong Xiangjun
Wang Pei
Tang Jian
Quasi-ideal Ehresmann transversals: The spined product structure
description In any U-abundant semigroup with an Ehresmann transversal, two significant components R and L are introduced in this paper and described by Green’s ∼\sim -relations. Some interesting properties associated with R and L are explored and some equivalent conditions for the Ehresmann transversal to be a quasi-ideal are acquired. Finally, a spined product structure theorem is established for a U-abundant semigroup with a quasi-ideal Ehresmann transversal by means of R and L.
format article
author Kong Xiangjun
Wang Pei
Tang Jian
author_facet Kong Xiangjun
Wang Pei
Tang Jian
author_sort Kong Xiangjun
title Quasi-ideal Ehresmann transversals: The spined product structure
title_short Quasi-ideal Ehresmann transversals: The spined product structure
title_full Quasi-ideal Ehresmann transversals: The spined product structure
title_fullStr Quasi-ideal Ehresmann transversals: The spined product structure
title_full_unstemmed Quasi-ideal Ehresmann transversals: The spined product structure
title_sort quasi-ideal ehresmann transversals: the spined product structure
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/ff23030e4c784a018560449164a267bb
work_keys_str_mv AT kongxiangjun quasiidealehresmanntransversalsthespinedproductstructure
AT wangpei quasiidealehresmanntransversalsthespinedproductstructure
AT tangjian quasiidealehresmanntransversalsthespinedproductstructure
_version_ 1718371657999974400