Quasi-ideal Ehresmann transversals: The spined product structure
In any U-abundant semigroup with an Ehresmann transversal, two significant components R and L are introduced in this paper and described by Green’s ∼\sim -relations. Some interesting properties associated with R and L are explored and some equivalent conditions for the Ehresmann transversal to be a...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff23030e4c784a018560449164a267bb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ff23030e4c784a018560449164a267bb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ff23030e4c784a018560449164a267bb2021-12-05T14:10:52ZQuasi-ideal Ehresmann transversals: The spined product structure2391-545510.1515/math-2020-0071https://doaj.org/article/ff23030e4c784a018560449164a267bb2021-04-01T00:00:00Zhttps://doi.org/10.1515/math-2020-0071https://doaj.org/toc/2391-5455In any U-abundant semigroup with an Ehresmann transversal, two significant components R and L are introduced in this paper and described by Green’s ∼\sim -relations. Some interesting properties associated with R and L are explored and some equivalent conditions for the Ehresmann transversal to be a quasi-ideal are acquired. Finally, a spined product structure theorem is established for a U-abundant semigroup with a quasi-ideal Ehresmann transversal by means of R and L.Kong XiangjunWang PeiTang JianDe Gruyterarticleu-abundant semigroupehresmann transversalgreen’s∼-relationsquasi-idealspined product20m10MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 77-86 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
u-abundant semigroup ehresmann transversal green’s∼-relations quasi-ideal spined product 20m10 Mathematics QA1-939 |
spellingShingle |
u-abundant semigroup ehresmann transversal green’s∼-relations quasi-ideal spined product 20m10 Mathematics QA1-939 Kong Xiangjun Wang Pei Tang Jian Quasi-ideal Ehresmann transversals: The spined product structure |
description |
In any U-abundant semigroup with an Ehresmann transversal, two significant components R and L are introduced in this paper and described by Green’s ∼\sim -relations. Some interesting properties associated with R and L are explored and some equivalent conditions for the Ehresmann transversal to be a quasi-ideal are acquired. Finally, a spined product structure theorem is established for a U-abundant semigroup with a quasi-ideal Ehresmann transversal by means of R and L. |
format |
article |
author |
Kong Xiangjun Wang Pei Tang Jian |
author_facet |
Kong Xiangjun Wang Pei Tang Jian |
author_sort |
Kong Xiangjun |
title |
Quasi-ideal Ehresmann transversals: The spined product structure |
title_short |
Quasi-ideal Ehresmann transversals: The spined product structure |
title_full |
Quasi-ideal Ehresmann transversals: The spined product structure |
title_fullStr |
Quasi-ideal Ehresmann transversals: The spined product structure |
title_full_unstemmed |
Quasi-ideal Ehresmann transversals: The spined product structure |
title_sort |
quasi-ideal ehresmann transversals: the spined product structure |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/ff23030e4c784a018560449164a267bb |
work_keys_str_mv |
AT kongxiangjun quasiidealehresmanntransversalsthespinedproductstructure AT wangpei quasiidealehresmanntransversalsthespinedproductstructure AT tangjian quasiidealehresmanntransversalsthespinedproductstructure |
_version_ |
1718371657999974400 |