A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia

Identification of markers of drug response is essential for precision therapy. Here the authors introduce an algorithm that uses prior information about each gene’s importance in AML to identify the most predictive gene-drug associations from transcriptome and drug response data from 30 AML samples....

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Su-In Lee, Safiye Celik, Benjamin A. Logsdon, Scott M. Lundberg, Timothy J. Martins, Vivian G. Oehler, Elihu H. Estey, Chris P. Miller, Sylvia Chien, Jin Dai, Akanksha Saxena, C. Anthony Blau, Pamela S. Becker
Format: article
Langue:EN
Publié: Nature Portfolio 2018
Sujets:
Q
Accès en ligne:https://doaj.org/article/ff277a1927e34d3491a2ec37c88816b8
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Identification of markers of drug response is essential for precision therapy. Here the authors introduce an algorithm that uses prior information about each gene’s importance in AML to identify the most predictive gene-drug associations from transcriptome and drug response data from 30 AML samples.