A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia

Identification of markers of drug response is essential for precision therapy. Here the authors introduce an algorithm that uses prior information about each gene’s importance in AML to identify the most predictive gene-drug associations from transcriptome and drug response data from 30 AML samples....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Su-In Lee, Safiye Celik, Benjamin A. Logsdon, Scott M. Lundberg, Timothy J. Martins, Vivian G. Oehler, Elihu H. Estey, Chris P. Miller, Sylvia Chien, Jin Dai, Akanksha Saxena, C. Anthony Blau, Pamela S. Becker
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/ff277a1927e34d3491a2ec37c88816b8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ff277a1927e34d3491a2ec37c88816b8
record_format dspace
spelling oai:doaj.org-article:ff277a1927e34d3491a2ec37c88816b82021-12-02T15:34:40ZA machine learning approach to integrate big data for precision medicine in acute myeloid leukemia10.1038/s41467-017-02465-52041-1723https://doaj.org/article/ff277a1927e34d3491a2ec37c88816b82018-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02465-5https://doaj.org/toc/2041-1723Identification of markers of drug response is essential for precision therapy. Here the authors introduce an algorithm that uses prior information about each gene’s importance in AML to identify the most predictive gene-drug associations from transcriptome and drug response data from 30 AML samples.Su-In LeeSafiye CelikBenjamin A. LogsdonScott M. LundbergTimothy J. MartinsVivian G. OehlerElihu H. EsteyChris P. MillerSylvia ChienJin DaiAkanksha SaxenaC. Anthony BlauPamela S. BeckerNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-13 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Su-In Lee
Safiye Celik
Benjamin A. Logsdon
Scott M. Lundberg
Timothy J. Martins
Vivian G. Oehler
Elihu H. Estey
Chris P. Miller
Sylvia Chien
Jin Dai
Akanksha Saxena
C. Anthony Blau
Pamela S. Becker
A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
description Identification of markers of drug response is essential for precision therapy. Here the authors introduce an algorithm that uses prior information about each gene’s importance in AML to identify the most predictive gene-drug associations from transcriptome and drug response data from 30 AML samples.
format article
author Su-In Lee
Safiye Celik
Benjamin A. Logsdon
Scott M. Lundberg
Timothy J. Martins
Vivian G. Oehler
Elihu H. Estey
Chris P. Miller
Sylvia Chien
Jin Dai
Akanksha Saxena
C. Anthony Blau
Pamela S. Becker
author_facet Su-In Lee
Safiye Celik
Benjamin A. Logsdon
Scott M. Lundberg
Timothy J. Martins
Vivian G. Oehler
Elihu H. Estey
Chris P. Miller
Sylvia Chien
Jin Dai
Akanksha Saxena
C. Anthony Blau
Pamela S. Becker
author_sort Su-In Lee
title A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
title_short A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
title_full A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
title_fullStr A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
title_full_unstemmed A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
title_sort machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/ff277a1927e34d3491a2ec37c88816b8
work_keys_str_mv AT suinlee amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT safiyecelik amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT benjaminalogsdon amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT scottmlundberg amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT timothyjmartins amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT viviangoehler amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT elihuhestey amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT chrispmiller amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT sylviachien amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT jindai amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT akankshasaxena amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT canthonyblau amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT pamelasbecker amachinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT suinlee machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT safiyecelik machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT benjaminalogsdon machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT scottmlundberg machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT timothyjmartins machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT viviangoehler machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT elihuhestey machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT chrispmiller machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT sylviachien machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT jindai machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT akankshasaxena machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT canthonyblau machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
AT pamelasbecker machinelearningapproachtointegratebigdataforprecisionmedicineinacutemyeloidleukemia
_version_ 1718386818644180992