A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
Identification of markers of drug response is essential for precision therapy. Here the authors introduce an algorithm that uses prior information about each gene’s importance in AML to identify the most predictive gene-drug associations from transcriptome and drug response data from 30 AML samples....
Enregistré dans:
Auteurs principaux: | Su-In Lee, Safiye Celik, Benjamin A. Logsdon, Scott M. Lundberg, Timothy J. Martins, Vivian G. Oehler, Elihu H. Estey, Chris P. Miller, Sylvia Chien, Jin Dai, Akanksha Saxena, C. Anthony Blau, Pamela S. Becker |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ff277a1927e34d3491a2ec37c88816b8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Targeting the epichaperome as an effective precision medicine approach in a novel PML-SYK fusion acute myeloid leukemia
par: Mayumi Sugita, et autres
Publié: (2021) -
Circular RNAs in acute myeloid leukemia
par: Vijendra Singh, et autres
Publié: (2021) -
Peptidomimetic blockade of MYB in acute myeloid leukemia
par: Kavitha Ramaswamy, et autres
Publié: (2018) -
NEW ADVANCES IN PEDIATRIC ACUTE MYELOID LEUKEMIA
par: Özlem Tüfekçi
Publié: (2021) -
METABOLIC STATE OF BLOOD LYMPHOCYTES IN CHRONIC MYELOID LEUKEMIA AND CHRONIC LYMPHOID LEUKEMIA
par: O. V. Smirnova, et autres
Publié: (2014)