A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
Identification of markers of drug response is essential for precision therapy. Here the authors introduce an algorithm that uses prior information about each gene’s importance in AML to identify the most predictive gene-drug associations from transcriptome and drug response data from 30 AML samples....
Guardado en:
Autores principales: | Su-In Lee, Safiye Celik, Benjamin A. Logsdon, Scott M. Lundberg, Timothy J. Martins, Vivian G. Oehler, Elihu H. Estey, Chris P. Miller, Sylvia Chien, Jin Dai, Akanksha Saxena, C. Anthony Blau, Pamela S. Becker |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff277a1927e34d3491a2ec37c88816b8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Targeting the epichaperome as an effective precision medicine approach in a novel PML-SYK fusion acute myeloid leukemia
por: Mayumi Sugita, et al.
Publicado: (2021) -
Circular RNAs in acute myeloid leukemia
por: Vijendra Singh, et al.
Publicado: (2021) -
Peptidomimetic blockade of MYB in acute myeloid leukemia
por: Kavitha Ramaswamy, et al.
Publicado: (2018) -
NEW ADVANCES IN PEDIATRIC ACUTE MYELOID LEUKEMIA
por: Özlem Tüfekçi
Publicado: (2021) -
METABOLIC STATE OF BLOOD LYMPHOCYTES IN CHRONIC MYELOID LEUKEMIA AND CHRONIC LYMPHOID LEUKEMIA
por: O. V. Smirnova, et al.
Publicado: (2014)