Weak supervision as an efficient approach for automated seizure detection in electroencephalography
Abstract Automated seizure detection from electroencephalography (EEG) would improve the quality of patient care while reducing medical costs, but achieving reliably high performance across patients has proven difficult. Convolutional Neural Networks (CNNs) show promise in addressing this problem, b...
Guardado en:
Autores principales: | Khaled Saab, Jared Dunnmon, Christopher Ré, Daniel Rubin, Christopher Lee-Messer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff53b21a684b46adb56f53e342154ca4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning
por: Yechan Mun, et al.
Publicado: (2021) -
Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study
por: Mohsin Bilal, PhD, et al.
Publicado: (2021) -
PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
por: Shih-Cheng Huang, et al.
Publicado: (2020) -
Author Correction: PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
por: Shih-Cheng Huang, et al.
Publicado: (2020) -
Automated coronary calcium scoring using deep learning with multicenter external validation
por: David Eng, et al.
Publicado: (2021)