Weak supervision as an efficient approach for automated seizure detection in electroencephalography
Abstract Automated seizure detection from electroencephalography (EEG) would improve the quality of patient care while reducing medical costs, but achieving reliably high performance across patients has proven difficult. Convolutional Neural Networks (CNNs) show promise in addressing this problem, b...
Enregistré dans:
Auteurs principaux: | Khaled Saab, Jared Dunnmon, Christopher Ré, Daniel Rubin, Christopher Lee-Messer |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ff53b21a684b46adb56f53e342154ca4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning
par: Yechan Mun, et autres
Publié: (2021) -
Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study
par: Mohsin Bilal, PhD, et autres
Publié: (2021) -
PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
par: Shih-Cheng Huang, et autres
Publié: (2020) -
Author Correction: PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
par: Shih-Cheng Huang, et autres
Publié: (2020) -
Automated coronary calcium scoring using deep learning with multicenter external validation
par: David Eng, et autres
Publié: (2021)