Recycling diagnostic MRI for empowering brain morphometric research – Critical & practical assessment on learning-based image super-resolution
Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI d...
Enregistré dans:
Auteurs principaux: | Gaoping Liu, Zehong Cao, Qiang Xu, Qirui Zhang, Fang Yang, Xinyu Xie, Jingru Hao, Yinghuan Shi, Boris C. Bernhardt, Yichu He, Feng Shi, Guangming Lu, Zhiqiang Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ff567b0fdbc84ce991ece2a84fce771a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Morphometric MRI Study of the Brain Ventricles in Healthy Turkish Subjects
par: Polat,Sema, et autres
Publié: (2019) -
From Super-Participants to Super-Echoed. Participation in the 2018 Italian Electoral Twittersphere
par: Roberta Bracciale, et autres
Publié: (2018) -
La debilidad de las súper-mayorías
par: Jiménez,Guillermo, et autres
Publié: (2013) -
Skeletodental Diagnosis Using a Geometric Morphometric Approach
par: Díaz Muñoz,Alejandro, et autres
Publié: (2014) -
MORPHOMETRIC ANALYSIS OF THE DEVELOPMENT OF THE OVARIAN FOLLICLES IN PINEALECTOMIZED RATS
par: Pereira dos Santos,Katharine Raquel, et autres
Publié: (2004)