ClusterMap for multi-scale clustering analysis of spatial gene expression
In situ transcriptomics maps RNA expression patterns across intact tissues taking our understanding of gene expression to a new level. Here, the authors present a computational method that uncovers gene expression, cell niche, and tissue region patterns from 2D and 3D spatial transcriptomics.
Guardado en:
Autores principales: | Yichun He, Xin Tang, Jiahao Huang, Jingyi Ren, Haowen Zhou, Kevin Chen, Albert Liu, Hailing Shi, Zuwan Lin, Qiang Li, Abhishek Aditham, Johain Ounadjela, Emanuelle I. Grody, Jian Shu, Jia Liu, Xiao Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff58b316e7154332a514271fdae78380 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analysis of Influencing Factors of Financial Market Volatility Based on Cluster Analysis
por: Haowen Chen
Publicado: (2021) -
Building Typification in Map Generalization Using Affinity Propagation Clustering
por: Xiongfeng Yan, et al.
Publicado: (2021) -
Evaluation of three organic soil emendations on clay soil for blueberry cultivar using cluster interpolated spatial maps
por: Kelsey T. Kalbacher, et al.
Publicado: (2018) -
Spatial clustering of tuning in mouse primary visual cortex
por: Dario L. Ringach, et al.
Publicado: (2016) -
Influence of spatial resolution on space-time disease cluster detection.
por: Stephen G Jones, et al.
Publicado: (2012)