Research on Online Defect Detection Method of Solar Cell Component Based on Lightweight Convolutional Neural Network
The defects of solar cell component (SCC) will affect the service life and power generation efficiency. In this paper, the defect images of SCC were taken by the photoluminescence (PL) method and processed by an advanced lightweight convolutional neural network (CNN). Firstly, in order to solve the...
Guardado en:
Autores principales: | Huaiguang Liu, Wancheng Ding, Qianwen Huang, Li Fang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff60b2dc552d40a1b29711d881afa673 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Novel Cooperative Multi-Input Multilayer Perceptron Neural Network Performance Analysis with Application of Solar Irradiance Forecasting
por: M. Madhiarasan, et al.
Publicado: (2021) -
Utilization of Rooftop Solar Units to Generate Electricity and Hydrogen: A Technoeconomic Analysis
por: Mostafa Rezaei, et al.
Publicado: (2021) -
An Exhaustive Review on a Solar Still Coupled with a Flat Plate Collector
por: Ahmadreza Ayoobi, et al.
Publicado: (2021) -
Performance Investigation of Tempered Glass-Based Monocrystalline and Polycrystalline Solar Photovoltaic Panels
por: Mardy Huot, et al.
Publicado: (2021) -
A Solution to Prevent a Blackout Crisis: Determining the Behavioral Potential and Capacity of Solar Power
por: Saeed Vedadi Kalantar, et al.
Publicado: (2021)