On the analogy between Arithmetic Geometry and foliated spaces
Christopher Deninger has developed an infinite dimensional cohomological formalism which allows to prove the expected properties of the arithmetical Zeta functions (including the Riemann Zeta function). These cohomologies are (in general) not yet constructed. Deninger has argued that these cohomolog...
Guardado en:
Autor principal: | Eric Leichtnam |
---|---|
Formato: | article |
Lenguaje: | EN FR IT |
Publicado: |
Sapienza Università Editrice
2008
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff62bd07605f424ab3d7937c3fba53dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ON SOME INFINITESIMAL AUTOMORPHISMS OF RIEMANNIAN FOLIATION
por: CHAOUCH,MOHAMET AlÍ, et al.
Publicado: (2007) -
ON THE COHOMOLOGY OF FOLIATED BUNDLES
por: PEREIRA,M. S., et al.
Publicado: (2002) -
ON FOLIATIONS WITH RATIONAL FIRST INTEGRAL
por: LICANIC,SERGIO
Publicado: (2005) -
Stronger arithmetic equivalence
por: Andrew V. Sutherland
Publicado: (2021) -
An Infinite Family of Compact, Complete, and Locally Affine <i>k</i>-Symplectic Manifolds of Dimension Three
por: Fanich El Mokhtar, et al.
Publicado: (2021)