DropConnect is effective in modeling uncertainty of Bayesian deep networks
Abstract Deep neural networks (DNNs) have achieved state-of-the-art performance in many important domains, including medical diagnosis, security, and autonomous driving. In domains where safety is highly critical, an erroneous decision can result in serious consequences. While a perfect prediction a...
Guardado en:
Autores principales: | Aryan Mobiny, Pengyu Yuan, Supratik K. Moulik, Naveen Garg, Carol C. Wu, Hien Van Nguyen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff6a04b4a5f649c98b73aae38d3ec8c3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Whole-brain tissue mapping toolkit using large-scale highly multiplexed immunofluorescence imaging and deep neural networks
por: Dragan Maric, et al.
Publicado: (2021) -
Publisher Correction: Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records
por: Yikuan Li, et al.
Publicado: (2021) -
Risk, unexpected uncertainty, and estimation uncertainty: Bayesian learning in unstable settings.
por: Elise Payzan-LeNestour, et al.
Publicado: (2011) -
Bayesian Deep Neural Network to Compensate for Current Transformer Saturation
por: Sopheap Key, et al.
Publicado: (2021) -
Reliable Route Selection for Wireless Sensor Networks with Connection Failure Uncertainties
por: Jianhua Lyu, et al.
Publicado: (2021)