On the Readability of Kernel-based Deep Learning Models in Semantic Role Labeling Tasks over Multiple Languages
Sentence embeddings are effective input vectors for the neural learning of a number of inferences about content and meaning. Unfortunately, most of such decision processes are epistemologically opaque as for the limited interpretability of the acquired neural models based on the involved embeddings....
Guardado en:
Autores principales: | Daniele Rossini, Danilo Croce, Roberto Basili |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Accademia University Press
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff78cfc9674d495fb2aca0c1210f27a3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
LU4R: Adaptive Spoken Language Understanding for Robots
por: Andrea Vanzo, et al.
Publicado: (2017) -
Deep Learning for Automatic Image Captioning in Poor Training Conditions
por: Caterina Masotti, et al.
Publicado: (2018) -
Large scale datasets for Image and Video Captioning in Italian
por: Scaiella Antonio, et al.
Publicado: (2019) -
Context-aware Models for Twitter Sentiment Analysis
por: Giuseppe Castellucci, et al.
Publicado: (2015) -
Introduction to the Special Issue on Natural Language and Learning Machines
por: Dan Roth, et al.
Publicado: (2017)