Characterizing chromatin landscape from aggregate and single-cell genomic assays using flexible duration modeling
Most currently available statistical tools for the analysis of ATAC-seq data were repurposed from tools developed for other functional genomics data (e.g. ChIP-seq). Here, Gabitto et al develop ChromA, a Bayesian statistical approach for the analysis of both bulk and single-cell ATAC-seq data.
Guardado en:
Autores principales: | Mariano I. Gabitto, Anders Rasmussen, Orly Wapinski, Kathryn Allaway, Nicholas Carriero, Gordon J. Fishell, Richard Bonneau |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff875af4ced749c59fcbbc72569eff52 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Probabilistic modelling of chromatin code landscape reveals functional diversity of enhancer-like chromatin states
por: Jian Zhou, et al.
Publicado: (2016) -
The HIV Genomic Incidence Assay Meets False Recency Rate and Mean Duration of Recency Infection Performance Standards
por: Sung Yong Park, et al.
Publicado: (2017) -
Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation
por: Jingxue Xin, et al.
Publicado: (2020) -
An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos
por: Longqi Liu, et al.
Publicado: (2019) -
Leukaemia cell of origin identified by chromatin landscape of bulk tumour cells
por: Joshy George, et al.
Publicado: (2016)