Utilizing machine learning with knockoff filtering to extract significant metabolites in Crohn's disease with a publicly available untargeted metabolomics dataset.
Metabolomic data processing pipelines have been improving in recent years, allowing for greater feature extraction and identification. Lately, machine learning and robust statistical techniques to control false discoveries are being incorporated into metabolomic data analysis. In this paper, we intr...
Enregistré dans:
Auteurs principaux: | Shoaib Bin Masud, Conor Jenkins, Erika Hussey, Seth Elkin-Frankston, Phillip Mach, Elizabeth Dhummakupt, Shuchin Aeron |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ff97c7d7b98d40f8b88205d0084b8322 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Identification of putative causal loci in whole-genome sequencing data via knockoff statistics
par: Zihuai He, et autres
Publié: (2021) -
Untargeted metabolomics approach to discriminate mistletoe commercial products
par: Cécile Vanhaverbeke, et autres
Publié: (2021) -
The Hitchhiker’s Guide to Untargeted Lipidomics Analysis: Practical Guidelines
par: Dmitrii Smirnov, et autres
Publié: (2021) -
Untargeted analysis of the serum metabolome in cats with exocrine pancreatic insufficiency.
par: Patrick C Barko, et autres
Publié: (2021) -
Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics
par: Xiaotao Shen, et autres
Publié: (2019)