Utilizing machine learning with knockoff filtering to extract significant metabolites in Crohn's disease with a publicly available untargeted metabolomics dataset.
Metabolomic data processing pipelines have been improving in recent years, allowing for greater feature extraction and identification. Lately, machine learning and robust statistical techniques to control false discoveries are being incorporated into metabolomic data analysis. In this paper, we intr...
Guardado en:
Autores principales: | Shoaib Bin Masud, Conor Jenkins, Erika Hussey, Seth Elkin-Frankston, Phillip Mach, Elizabeth Dhummakupt, Shuchin Aeron |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ff97c7d7b98d40f8b88205d0084b8322 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of putative causal loci in whole-genome sequencing data via knockoff statistics
por: Zihuai He, et al.
Publicado: (2021) -
Untargeted metabolomics approach to discriminate mistletoe commercial products
por: Cécile Vanhaverbeke, et al.
Publicado: (2021) -
The Hitchhiker’s Guide to Untargeted Lipidomics Analysis: Practical Guidelines
por: Dmitrii Smirnov, et al.
Publicado: (2021) -
Untargeted analysis of the serum metabolome in cats with exocrine pancreatic insufficiency.
por: Patrick C Barko, et al.
Publicado: (2021) -
Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics
por: Xiaotao Shen, et al.
Publicado: (2019)