Capturing human categorization of natural images by combining deep networks and cognitive models

Theories of human categorization have traditionally been evaluated in the context of simple, low-dimensional stimuli. In this work, the authors use a large dataset of human behavior over 10,000 natural images to re-evaluate these theories, revealing interesting differences from previous results.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Ruairidh M. Battleday, Joshua C. Peterson, Thomas L. Griffiths
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/ffa2f7836f054d09ae4e8a005ae4f56a
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Theories of human categorization have traditionally been evaluated in the context of simple, low-dimensional stimuli. In this work, the authors use a large dataset of human behavior over 10,000 natural images to re-evaluate these theories, revealing interesting differences from previous results.