Capturing human categorization of natural images by combining deep networks and cognitive models
Theories of human categorization have traditionally been evaluated in the context of simple, low-dimensional stimuli. In this work, the authors use a large dataset of human behavior over 10,000 natural images to re-evaluate these theories, revealing interesting differences from previous results.
Guardado en:
Autores principales: | Ruairidh M. Battleday, Joshua C. Peterson, Thomas L. Griffiths |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ffa2f7836f054d09ae4e8a005ae4f56a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Categorization of Political Terms in the Image and Likeness of the Container
por: O. F. Zadobrivscaia, et al.
Publicado: (2021) -
A DEEP AUTOENCODER-BASED REPRESENTATION FOR ARABIC TEXT CATEGORIZATION
por: Fatima-Zahra El-Alami, et al.
Publicado: (2020) -
Categorizing Diseases from Leaf Images Using a Hybrid Learning Model
por: Devi N., et al.
Publicado: (2021) -
Applied categorical structures
Publicado: (1993) -
Categorizing Collective Capabilities
por: Francesca Rosignoli
Publicado: (2019)