Detecting Patterns in Energy Use and Greenhouse Gas Emissions of Cities Using Machine Learning
Cities are expected to play a major role in managing climate change in the coming decades. The actual environmental performance of urban centres is difficult to predict due to the complex interplay of technologies and infrastructure with social, economic, and political factors. Machine learning (ML)...
Guardado en:
Autores principales: | Kathleen B. Aviso, Marc Joseph Capili, Hon Huin Chin, Yee Van Fan, Jirí Jaromír Klemeš, Raymond R. Tan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIDIC Servizi S.r.l.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ffabfbf8f0bc43bb85f16eb1d471f469 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Environmental Impacts of Plastic Materials Flow Minimisation Using Data-Driven Pinch Method
por: Petar Sabev Varbanov, et al.
Publicado: (2021) -
Optimising Segregated Resource Conservation Network with Cross-Zonal Transfer for Multiple Resources and Qualities
por: Sheetal Jain, et al.
Publicado: (2021) -
Vulnerability Analysis for Park-Wide Water Management Using Dynamic Inoperability Input-Output Model
por: Xiaoping Jia, et al.
Publicado: (2021) -
Data-Driven Recyclability Classification of Plastic Waste
por: Hon Huin Chin, et al.
Publicado: (2021) -
Enhancement and Energy Optimised Integration of Heat Exchangers in Petrochemical Industry for Waste Heat Utilisation
por: Min Zeng, et al.
Publicado: (2021)