Gene expression in a Drosophila model of mitochondrial disease.

<h4>Background</h4>A point mutation in the Drosophila gene technical knockout (tko), encoding mitoribosomal protein S12, was previously shown to cause a phenotype of respiratory chain deficiency, developmental delay, and neurological abnormalities similar to those presented in many human...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel J M Fernández-Ayala, Shanjun Chen, Esko Kemppainen, Kevin M C O'Dell, Howard T Jacobs
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2010
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ffb2ebf584b74dfb90c7d31140c09322
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Background</h4>A point mutation in the Drosophila gene technical knockout (tko), encoding mitoribosomal protein S12, was previously shown to cause a phenotype of respiratory chain deficiency, developmental delay, and neurological abnormalities similar to those presented in many human mitochondrial disorders, as well as defective courtship behavior.<h4>Methodology/principal findings</h4>Here, we describe a transcriptome-wide analysis of gene expression in tko(25t) mutant flies that revealed systematic and compensatory changes in the expression of genes connected with metabolism, including up-regulation of lactate dehydrogenase and of many genes involved in the catabolism of fats and proteins, and various anaplerotic pathways. Gut-specific enzymes involved in the primary mobilization of dietary fats and proteins, as well as a number of transport functions, were also strongly up-regulated, consistent with the idea that oxidative phosphorylation OXPHOS dysfunction is perceived physiologically as a starvation for particular biomolecules. In addition, many stress-response genes were induced. Other changes may reflect a signature of developmental delay, notably a down-regulation of genes connected with reproduction, including gametogenesis, as well as courtship behavior in males; logically this represents a programmed response to a mitochondrially generated starvation signal. The underlying signalling pathway, if conserved, could influence many physiological processes in response to nutritional stress, although any such pathway involved remains unidentified.<h4>Conclusions/significance</h4>These studies indicate that general and organ-specific metabolism is transformed in response to mitochondrial dysfunction, including digestive and absorptive functions, and give important clues as to how novel therapeutic strategies for mitochondrial disorders might be developed.