Amyloid-β peptide binds to cytochrome C oxidase subunit 1.
Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amylo...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fff283e4831e4f22be5c18ec56fddbbe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD. |
---|