Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet
Rolling bearings are important in rotating machinery and equipment. This research proposes variational mode decomposition (VMD)-DenseNet to diagnose faults in bearings. The research feature involves analyzing the Hilbert spectrum through VMD whereby the vibration signal is converted into an image. H...
Guardado en:
Autor principal: | Shih-Lin Lin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fffe8e3fc1e147b3b564b08d52d23857 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Landslide Detection Mapping Employing CNN, ResNet, and DenseNet in the Three Gorges Reservoir, China
por: Tong Liu, et al.
Publicado: (2021) -
Intelligent Algorithm for Variable Scale Adaptive Feature Separation of Mechanical Composite Fault Signals
por: Shu Han, et al.
Publicado: (2021) -
Trust-Based Petri Net Model for Fault Detection and Treatment in Automated Manufacturing Systems
por: Ebrahim Ali Alzalab, et al.
Publicado: (2021) -
Artificial Intelligence to Detect Meibomian Gland Dysfunction From in-vivo Laser Confocal Microscopy
por: Ye-Ye Zhang, et al.
Publicado: (2021) -
Deep Learning-Based Optimal Smart Shoes Sensor Selection for Energy Expenditure and Heart Rate Estimation
por: Heesang Eom, et al.
Publicado: (2021)