Identificación de los determinantes de la estadía en Unidades de Cuidados Intensivos usando redes neuronales artificiales

The prediction of the length of stay at the moment of hospital admission is of outmost importance. Many studies have used lineal models to predict this variable, but there are inherent limitations to these models. The use of non lineal models has been scarce. Aim: To develop a non lineal model to pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chacón P,Max, Rocco M,Víctor, Morgado A,Enrique, Sáez H,Enzo, Pliscoff M,Sergio
Lenguaje:Spanish / Castilian
Publicado: Sociedad Médica de Santiago 2002
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872002000100010
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0034-98872002000100010
record_format dspace
spelling oai:scielo:S0034-988720020001000102002-04-09Identificación de los determinantes de la estadía en Unidades de Cuidados Intensivos usando redes neuronales artificialesChacón P,MaxRocco M,VíctorMorgado A,EnriqueSáez H,EnzoPliscoff M,Sergio Intensive care units Models, theoretical, Neural networks (computer) The prediction of the length of stay at the moment of hospital admission is of outmost importance. Many studies have used lineal models to predict this variable, but there are inherent limitations to these models. The use of non lineal models has been scarce. Aim: To develop a non lineal model to predict length of stay in intensive care units. Material and methods: Retrospective analysis of 294 patients admitted to two intensive care units in Santiago, Chile. The severity of the disease motivating the admission was nominally quantified. This and other physiological variables were included in the model. The length of stay was modeled using Artificial Neural Networks. Results: The model yielded an error of 8.7% (3.6 ± 0.4 days, CI 95%) and a correlation coefficient of 0.9 (p <0.001) for the prediction of length of stay. Using net sensitivity analysis, the model determined that gastrointestinal diseases, infections and respiratory problems were the main causes of prolongation of intensive care unit stay. Conclusions: Intensive care units should have, in the future, computer systems that gather vital information to predict length of stay (Rev Méd Chile 2002; 130: 71-78)info:eu-repo/semantics/openAccessSociedad Médica de SantiagoRevista médica de Chile v.130 n.1 20022002-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872002000100010es10.4067/S0034-98872002000100010
institution Scielo Chile
collection Scielo Chile
language Spanish / Castilian
topic Intensive care units
Models, theoretical, Neural networks (computer)
spellingShingle Intensive care units
Models, theoretical, Neural networks (computer)
Chacón P,Max
Rocco M,Víctor
Morgado A,Enrique
Sáez H,Enzo
Pliscoff M,Sergio
Identificación de los determinantes de la estadía en Unidades de Cuidados Intensivos usando redes neuronales artificiales
description The prediction of the length of stay at the moment of hospital admission is of outmost importance. Many studies have used lineal models to predict this variable, but there are inherent limitations to these models. The use of non lineal models has been scarce. Aim: To develop a non lineal model to predict length of stay in intensive care units. Material and methods: Retrospective analysis of 294 patients admitted to two intensive care units in Santiago, Chile. The severity of the disease motivating the admission was nominally quantified. This and other physiological variables were included in the model. The length of stay was modeled using Artificial Neural Networks. Results: The model yielded an error of 8.7% (3.6 ± 0.4 days, CI 95%) and a correlation coefficient of 0.9 (p <0.001) for the prediction of length of stay. Using net sensitivity analysis, the model determined that gastrointestinal diseases, infections and respiratory problems were the main causes of prolongation of intensive care unit stay. Conclusions: Intensive care units should have, in the future, computer systems that gather vital information to predict length of stay (Rev Méd Chile 2002; 130: 71-78)
author Chacón P,Max
Rocco M,Víctor
Morgado A,Enrique
Sáez H,Enzo
Pliscoff M,Sergio
author_facet Chacón P,Max
Rocco M,Víctor
Morgado A,Enrique
Sáez H,Enzo
Pliscoff M,Sergio
author_sort Chacón P,Max
title Identificación de los determinantes de la estadía en Unidades de Cuidados Intensivos usando redes neuronales artificiales
title_short Identificación de los determinantes de la estadía en Unidades de Cuidados Intensivos usando redes neuronales artificiales
title_full Identificación de los determinantes de la estadía en Unidades de Cuidados Intensivos usando redes neuronales artificiales
title_fullStr Identificación de los determinantes de la estadía en Unidades de Cuidados Intensivos usando redes neuronales artificiales
title_full_unstemmed Identificación de los determinantes de la estadía en Unidades de Cuidados Intensivos usando redes neuronales artificiales
title_sort identificación de los determinantes de la estadía en unidades de cuidados intensivos usando redes neuronales artificiales
publisher Sociedad Médica de Santiago
publishDate 2002
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872002000100010
work_keys_str_mv AT chaconpmax identificaciondelosdeterminantesdelaestadiaenunidadesdecuidadosintensivosusandoredesneuronalesartificiales
AT roccomvictor identificaciondelosdeterminantesdelaestadiaenunidadesdecuidadosintensivosusandoredesneuronalesartificiales
AT morgadoaenrique identificaciondelosdeterminantesdelaestadiaenunidadesdecuidadosintensivosusandoredesneuronalesartificiales
AT saezhenzo identificaciondelosdeterminantesdelaestadiaenunidadesdecuidadosintensivosusandoredesneuronalesartificiales
AT pliscoffmsergio identificaciondelosdeterminantesdelaestadiaenunidadesdecuidadosintensivosusandoredesneuronalesartificiales
_version_ 1718436010802544640