Percolación de la epidemia de influenza AH1N1 en el mundo: Utilidad de los modelos predictivos basados en conectividad espacial

Background: The 2009 AH1N1 epidemics expanded rapidly around the world by the current connectivity conditions. The spread of epidemics can be described by the phenomenon of percolation, that allows the estimation of the threshold conditions that produce connectivity between different regions and tha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: CANALS L,MAURICIO, CANALS C,ANDREA
Lenguaje:Spanish / Castilian
Publicado: Sociedad Médica de Santiago 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872010000500007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0034-98872010000500007
record_format dspace
spelling oai:scielo:S0034-988720100005000072010-07-12Percolación de la epidemia de influenza AH1N1 en el mundo: Utilidad de los modelos predictivos basados en conectividad espacialCANALS L,MAURICIOCANALS C,ANDREA Disease outbreaks Influenza, human World Health Organization Background: The 2009 AH1N1 epidemics expanded rapidly around the world by the current connectivity conditions. The spread of epidemics can be described by the phenomenon of percolation, that allows the estimation of the threshold conditions that produce connectivity between different regions and that has been used to describe physical and ecological phenomena. Aim: To analyze the spread of AH1N1 epidemic based on information from the WHO. Material and Methods: The world was considered as composed of a set of countries and regular cells. The moment when the percolation occurred was analyzed and logistic regressions were adjusted to the change in the proportion of infected units versus time, comparing predicted and observed rates. Results: Percolation occurred in America on day 15, in Eurasia on day 32 and in the world on day 74. The models showed adequate predictive capacity. The predictions for the percolation of the epidemic in the world varied between days 66 and 75. The prediction based on countries was better than that based on cells. Conclusions: These results show that percolation theory fts well to the spread of epidemics. Predictions based only on data on-off (infected non infected) and in the progression of the proportion of infected cells are a good way of predicting the spread of an epidemic and when this crosses a region geographically.info:eu-repo/semantics/openAccessSociedad Médica de SantiagoRevista médica de Chile v.138 n.5 20102010-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872010000500007es10.4067/S0034-98872010000500007
institution Scielo Chile
collection Scielo Chile
language Spanish / Castilian
topic Disease outbreaks
Influenza, human
World Health Organization
spellingShingle Disease outbreaks
Influenza, human
World Health Organization
CANALS L,MAURICIO
CANALS C,ANDREA
Percolación de la epidemia de influenza AH1N1 en el mundo: Utilidad de los modelos predictivos basados en conectividad espacial
description Background: The 2009 AH1N1 epidemics expanded rapidly around the world by the current connectivity conditions. The spread of epidemics can be described by the phenomenon of percolation, that allows the estimation of the threshold conditions that produce connectivity between different regions and that has been used to describe physical and ecological phenomena. Aim: To analyze the spread of AH1N1 epidemic based on information from the WHO. Material and Methods: The world was considered as composed of a set of countries and regular cells. The moment when the percolation occurred was analyzed and logistic regressions were adjusted to the change in the proportion of infected units versus time, comparing predicted and observed rates. Results: Percolation occurred in America on day 15, in Eurasia on day 32 and in the world on day 74. The models showed adequate predictive capacity. The predictions for the percolation of the epidemic in the world varied between days 66 and 75. The prediction based on countries was better than that based on cells. Conclusions: These results show that percolation theory fts well to the spread of epidemics. Predictions based only on data on-off (infected non infected) and in the progression of the proportion of infected cells are a good way of predicting the spread of an epidemic and when this crosses a region geographically.
author CANALS L,MAURICIO
CANALS C,ANDREA
author_facet CANALS L,MAURICIO
CANALS C,ANDREA
author_sort CANALS L,MAURICIO
title Percolación de la epidemia de influenza AH1N1 en el mundo: Utilidad de los modelos predictivos basados en conectividad espacial
title_short Percolación de la epidemia de influenza AH1N1 en el mundo: Utilidad de los modelos predictivos basados en conectividad espacial
title_full Percolación de la epidemia de influenza AH1N1 en el mundo: Utilidad de los modelos predictivos basados en conectividad espacial
title_fullStr Percolación de la epidemia de influenza AH1N1 en el mundo: Utilidad de los modelos predictivos basados en conectividad espacial
title_full_unstemmed Percolación de la epidemia de influenza AH1N1 en el mundo: Utilidad de los modelos predictivos basados en conectividad espacial
title_sort percolación de la epidemia de influenza ah1n1 en el mundo: utilidad de los modelos predictivos basados en conectividad espacial
publisher Sociedad Médica de Santiago
publishDate 2010
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872010000500007
work_keys_str_mv AT canalslmauricio percolaciondelaepidemiadeinfluenzaah1n1enelmundoutilidaddelosmodelospredictivosbasadosenconectividadespacial
AT canalscandrea percolaciondelaepidemiadeinfluenzaah1n1enelmundoutilidaddelosmodelospredictivosbasadosenconectividadespacial
_version_ 1718436504493096960