Formulación de una ecuación para predecir la masa grasa corporal a partir de bioimpedanciometría en adultos en un amplio rango de edad e índice de masa corporal

Background: Bioelectrical impedance (BIA) has a good correlation and agreement with reference techniques, such as dual energy X-ray absorptiometry (DEXA), to assess body composition. Aim: To develop and assess the concordance of an equation to predict body fat mass derived from anthropometric data,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Schifferli,Ingrid, Carrasco,Fernando, Inostroza,Jorge
Lenguaje:Spanish / Castilian
Publicado: Sociedad Médica de Santiago 2011
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872011001200002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0034-98872011001200002
record_format dspace
spelling oai:scielo:S0034-988720110012000022012-03-07Formulación de una ecuación para predecir la masa grasa corporal a partir de bioimpedanciometría en adultos en un amplio rango de edad e índice de masa corporalSchifferli,IngridCarrasco,FernandoInostroza,Jorge Body composition Body fact distribution Electric impedance Background: Bioelectrical impedance (BIA) has a good correlation and agreement with reference techniques, such as dual energy X-ray absorptiometry (DEXA), to assess body composition. Aim: To develop and assess the concordance of an equation to predict body fat mass derived from anthropometric data, gender, age and resistance obtained from bioelectrical impedance in adults, using DEXA as the reference method. Patients and Methods: Cross-sectional study of 62 women and 59 men aged 18 to 64 years with a body mass index ranging from 18.5 to 34.8 kg/ m². The equation was constructed using a predictive statistical model, considering sex, age, weight, resistance index (height²(cm)/ resistance (ohms)), as independent variables, and fat mass as the dependent variable. Results: The R² of the regression model was 0.96, and the standard error of estimation was 2.58 kg (p < 0.001). When comparing with DEXA, no significant differences were observed for the estimation of FM, between the equation developed in this work and that proposed by the manufacturer of the BIA equipment. However, the latter equation, underestimated FM by -2.5 ± 9.5% (p &gt; 0.05) and - 4.5 ± 8,9% (p < 0.05) in both genders and in women, respectively. Conclusions: The concordance between estimation of fat mass by the formula developed in this work and by DEXA was better than the estimation obtained using the formula proposed by the manufacturer of the BIA equipment.info:eu-repo/semantics/openAccessSociedad Médica de SantiagoRevista médica de Chile v.139 n.12 20112011-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872011001200002es10.4067/S0034-98872011001200002
institution Scielo Chile
collection Scielo Chile
language Spanish / Castilian
topic Body composition
Body fact distribution
Electric impedance
spellingShingle Body composition
Body fact distribution
Electric impedance
Schifferli,Ingrid
Carrasco,Fernando
Inostroza,Jorge
Formulación de una ecuación para predecir la masa grasa corporal a partir de bioimpedanciometría en adultos en un amplio rango de edad e índice de masa corporal
description Background: Bioelectrical impedance (BIA) has a good correlation and agreement with reference techniques, such as dual energy X-ray absorptiometry (DEXA), to assess body composition. Aim: To develop and assess the concordance of an equation to predict body fat mass derived from anthropometric data, gender, age and resistance obtained from bioelectrical impedance in adults, using DEXA as the reference method. Patients and Methods: Cross-sectional study of 62 women and 59 men aged 18 to 64 years with a body mass index ranging from 18.5 to 34.8 kg/ m². The equation was constructed using a predictive statistical model, considering sex, age, weight, resistance index (height²(cm)/ resistance (ohms)), as independent variables, and fat mass as the dependent variable. Results: The R² of the regression model was 0.96, and the standard error of estimation was 2.58 kg (p < 0.001). When comparing with DEXA, no significant differences were observed for the estimation of FM, between the equation developed in this work and that proposed by the manufacturer of the BIA equipment. However, the latter equation, underestimated FM by -2.5 ± 9.5% (p &gt; 0.05) and - 4.5 ± 8,9% (p < 0.05) in both genders and in women, respectively. Conclusions: The concordance between estimation of fat mass by the formula developed in this work and by DEXA was better than the estimation obtained using the formula proposed by the manufacturer of the BIA equipment.
author Schifferli,Ingrid
Carrasco,Fernando
Inostroza,Jorge
author_facet Schifferli,Ingrid
Carrasco,Fernando
Inostroza,Jorge
author_sort Schifferli,Ingrid
title Formulación de una ecuación para predecir la masa grasa corporal a partir de bioimpedanciometría en adultos en un amplio rango de edad e índice de masa corporal
title_short Formulación de una ecuación para predecir la masa grasa corporal a partir de bioimpedanciometría en adultos en un amplio rango de edad e índice de masa corporal
title_full Formulación de una ecuación para predecir la masa grasa corporal a partir de bioimpedanciometría en adultos en un amplio rango de edad e índice de masa corporal
title_fullStr Formulación de una ecuación para predecir la masa grasa corporal a partir de bioimpedanciometría en adultos en un amplio rango de edad e índice de masa corporal
title_full_unstemmed Formulación de una ecuación para predecir la masa grasa corporal a partir de bioimpedanciometría en adultos en un amplio rango de edad e índice de masa corporal
title_sort formulación de una ecuación para predecir la masa grasa corporal a partir de bioimpedanciometría en adultos en un amplio rango de edad e índice de masa corporal
publisher Sociedad Médica de Santiago
publishDate 2011
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872011001200002
work_keys_str_mv AT schifferliingrid formulaciondeunaecuacionparapredecirlamasagrasacorporalapartirdebioimpedanciometriaenadultosenunampliorangodeedadeindicedemasacorporal
AT carrascofernando formulaciondeunaecuacionparapredecirlamasagrasacorporalapartirdebioimpedanciometriaenadultosenunampliorangodeedadeindicedemasacorporal
AT inostrozajorge formulaciondeunaecuacionparapredecirlamasagrasacorporalapartirdebioimpedanciometriaenadultosenunampliorangodeedadeindicedemasacorporal
_version_ 1718436601484279808