Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile

Background: The reduction of major depression incidence is a public health challenge. Aim: To develop an algorithm to estimate the risk of occurrence of major depression in patients attending primary health centers (PHC). Material and Methods: Prospective cohort study of a random sample of 2832 pati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Saldivia,Sandra, Vicente,Benjamin, Marston,Louise, Melipillán,Roberto, Nazareth,Irwin, Bellón-Saameño,Juan, Xavier,Miguel, Maaroos,Heidi Ingrid, Svab,Igor, Geerlings,M-I, King,Michael
Lenguaje:Spanish / Castilian
Publicado: Sociedad Médica de Santiago 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872014000300006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0034-98872014000300006
record_format dspace
spelling oai:scielo:S0034-988720140003000062014-09-02Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en ChileSaldivia,SandraVicente,BenjaminMarston,LouiseMelipillán,RobertoNazareth,IrwinBellón-Saameño,JuanXavier,MiguelMaaroos,Heidi IngridSvab,IgorGeerlings,M-IKing,Michael Decision Support techniques Depression Primary health care Background: The reduction of major depression incidence is a public health challenge. Aim: To develop an algorithm to estimate the risk of occurrence of major depression in patients attending primary health centers (PHC). Material and Methods: Prospective cohort study of a random sample of 2832 patients attending PHC centers in Concepción, Chile, with evaluations at baseline, six and twelve months. Thirty nine known risk factors for depression were measured to build a model, using a logistic regression. The algorithm was developed in 2,133 patients not depressed at baseline and compared with risk algorithms developed in a sample of 5,216 European primary care attenders. The main outcome was the incidence of major depression in the follow-up period. Results: The cumulative incidence of depression during the 12 months follow up in Chile was 12%. Eight variables were identified. Four corresponded to the patient (gender, age, depression background and educational level) and four to patients' current situation (physical and mental health, satisfaction with their situation at home and satisfaction with the relationship with their partner). The C-Index, used to assess the discriminating power of the final model, was 0.746 (95% confidence intervals (CI = 0,707-0,785), slightly lower than the equation obtained in European (0.790 95% CI = 0.767-0.813) and Spanish attenders (0.82; 95% CI = 0.79-0.84). Conclusions: Four of the factors identified in the risk algorithm are not modifiable. The other two factors are directly associated with the primary support network (family and partner). This risk algorithm for the incidence of major depression provides a tool that can guide efforts towards design, implementation and evaluation of effectiveness of interventions to prevent major depression.info:eu-repo/semantics/openAccessSociedad Médica de SantiagoRevista médica de Chile v.142 n.3 20142014-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872014000300006es10.4067/S0034-98872014000300006
institution Scielo Chile
collection Scielo Chile
language Spanish / Castilian
topic Decision Support techniques
Depression
Primary health care
spellingShingle Decision Support techniques
Depression
Primary health care
Saldivia,Sandra
Vicente,Benjamin
Marston,Louise
Melipillán,Roberto
Nazareth,Irwin
Bellón-Saameño,Juan
Xavier,Miguel
Maaroos,Heidi Ingrid
Svab,Igor
Geerlings,M-I
King,Michael
Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile
description Background: The reduction of major depression incidence is a public health challenge. Aim: To develop an algorithm to estimate the risk of occurrence of major depression in patients attending primary health centers (PHC). Material and Methods: Prospective cohort study of a random sample of 2832 patients attending PHC centers in Concepción, Chile, with evaluations at baseline, six and twelve months. Thirty nine known risk factors for depression were measured to build a model, using a logistic regression. The algorithm was developed in 2,133 patients not depressed at baseline and compared with risk algorithms developed in a sample of 5,216 European primary care attenders. The main outcome was the incidence of major depression in the follow-up period. Results: The cumulative incidence of depression during the 12 months follow up in Chile was 12%. Eight variables were identified. Four corresponded to the patient (gender, age, depression background and educational level) and four to patients' current situation (physical and mental health, satisfaction with their situation at home and satisfaction with the relationship with their partner). The C-Index, used to assess the discriminating power of the final model, was 0.746 (95% confidence intervals (CI = 0,707-0,785), slightly lower than the equation obtained in European (0.790 95% CI = 0.767-0.813) and Spanish attenders (0.82; 95% CI = 0.79-0.84). Conclusions: Four of the factors identified in the risk algorithm are not modifiable. The other two factors are directly associated with the primary support network (family and partner). This risk algorithm for the incidence of major depression provides a tool that can guide efforts towards design, implementation and evaluation of effectiveness of interventions to prevent major depression.
author Saldivia,Sandra
Vicente,Benjamin
Marston,Louise
Melipillán,Roberto
Nazareth,Irwin
Bellón-Saameño,Juan
Xavier,Miguel
Maaroos,Heidi Ingrid
Svab,Igor
Geerlings,M-I
King,Michael
author_facet Saldivia,Sandra
Vicente,Benjamin
Marston,Louise
Melipillán,Roberto
Nazareth,Irwin
Bellón-Saameño,Juan
Xavier,Miguel
Maaroos,Heidi Ingrid
Svab,Igor
Geerlings,M-I
King,Michael
author_sort Saldivia,Sandra
title Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile
title_short Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile
title_full Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile
title_fullStr Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile
title_full_unstemmed Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile
title_sort desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en chile
publisher Sociedad Médica de Santiago
publishDate 2014
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872014000300006
work_keys_str_mv AT saldiviasandra desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile
AT vicentebenjamin desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile
AT marstonlouise desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile
AT melipillanroberto desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile
AT nazarethirwin desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile
AT bellonsaamenojuan desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile
AT xaviermiguel desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile
AT maaroosheidiingrid desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile
AT svabigor desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile
AT geerlingsmi desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile
AT kingmichael desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile
_version_ 1718436742989611008