Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile
Background: The reduction of major depression incidence is a public health challenge. Aim: To develop an algorithm to estimate the risk of occurrence of major depression in patients attending primary health centers (PHC). Material and Methods: Prospective cohort study of a random sample of 2832 pati...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Lenguaje: | Spanish / Castilian |
Publicado: |
Sociedad Médica de Santiago
2014
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872014000300006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0034-98872014000300006 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0034-988720140003000062014-09-02Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en ChileSaldivia,SandraVicente,BenjaminMarston,LouiseMelipillán,RobertoNazareth,IrwinBellón-Saameño,JuanXavier,MiguelMaaroos,Heidi IngridSvab,IgorGeerlings,M-IKing,Michael Decision Support techniques Depression Primary health care Background: The reduction of major depression incidence is a public health challenge. Aim: To develop an algorithm to estimate the risk of occurrence of major depression in patients attending primary health centers (PHC). Material and Methods: Prospective cohort study of a random sample of 2832 patients attending PHC centers in Concepción, Chile, with evaluations at baseline, six and twelve months. Thirty nine known risk factors for depression were measured to build a model, using a logistic regression. The algorithm was developed in 2,133 patients not depressed at baseline and compared with risk algorithms developed in a sample of 5,216 European primary care attenders. The main outcome was the incidence of major depression in the follow-up period. Results: The cumulative incidence of depression during the 12 months follow up in Chile was 12%. Eight variables were identified. Four corresponded to the patient (gender, age, depression background and educational level) and four to patients' current situation (physical and mental health, satisfaction with their situation at home and satisfaction with the relationship with their partner). The C-Index, used to assess the discriminating power of the final model, was 0.746 (95% confidence intervals (CI = 0,707-0,785), slightly lower than the equation obtained in European (0.790 95% CI = 0.767-0.813) and Spanish attenders (0.82; 95% CI = 0.79-0.84). Conclusions: Four of the factors identified in the risk algorithm are not modifiable. The other two factors are directly associated with the primary support network (family and partner). This risk algorithm for the incidence of major depression provides a tool that can guide efforts towards design, implementation and evaluation of effectiveness of interventions to prevent major depression.info:eu-repo/semantics/openAccessSociedad Médica de SantiagoRevista médica de Chile v.142 n.3 20142014-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872014000300006es10.4067/S0034-98872014000300006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
Spanish / Castilian |
topic |
Decision Support techniques Depression Primary health care |
spellingShingle |
Decision Support techniques Depression Primary health care Saldivia,Sandra Vicente,Benjamin Marston,Louise Melipillán,Roberto Nazareth,Irwin Bellón-Saameño,Juan Xavier,Miguel Maaroos,Heidi Ingrid Svab,Igor Geerlings,M-I King,Michael Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile |
description |
Background: The reduction of major depression incidence is a public health challenge. Aim: To develop an algorithm to estimate the risk of occurrence of major depression in patients attending primary health centers (PHC). Material and Methods: Prospective cohort study of a random sample of 2832 patients attending PHC centers in Concepción, Chile, with evaluations at baseline, six and twelve months. Thirty nine known risk factors for depression were measured to build a model, using a logistic regression. The algorithm was developed in 2,133 patients not depressed at baseline and compared with risk algorithms developed in a sample of 5,216 European primary care attenders. The main outcome was the incidence of major depression in the follow-up period. Results: The cumulative incidence of depression during the 12 months follow up in Chile was 12%. Eight variables were identified. Four corresponded to the patient (gender, age, depression background and educational level) and four to patients' current situation (physical and mental health, satisfaction with their situation at home and satisfaction with the relationship with their partner). The C-Index, used to assess the discriminating power of the final model, was 0.746 (95% confidence intervals (CI = 0,707-0,785), slightly lower than the equation obtained in European (0.790 95% CI = 0.767-0.813) and Spanish attenders (0.82; 95% CI = 0.79-0.84). Conclusions: Four of the factors identified in the risk algorithm are not modifiable. The other two factors are directly associated with the primary support network (family and partner). This risk algorithm for the incidence of major depression provides a tool that can guide efforts towards design, implementation and evaluation of effectiveness of interventions to prevent major depression. |
author |
Saldivia,Sandra Vicente,Benjamin Marston,Louise Melipillán,Roberto Nazareth,Irwin Bellón-Saameño,Juan Xavier,Miguel Maaroos,Heidi Ingrid Svab,Igor Geerlings,M-I King,Michael |
author_facet |
Saldivia,Sandra Vicente,Benjamin Marston,Louise Melipillán,Roberto Nazareth,Irwin Bellón-Saameño,Juan Xavier,Miguel Maaroos,Heidi Ingrid Svab,Igor Geerlings,M-I King,Michael |
author_sort |
Saldivia,Sandra |
title |
Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile |
title_short |
Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile |
title_full |
Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile |
title_fullStr |
Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile |
title_full_unstemmed |
Desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en Chile |
title_sort |
desarrollo y validación de un algoritmo para predecir riesgo de depresión en consultantes de atención primaria en chile |
publisher |
Sociedad Médica de Santiago |
publishDate |
2014 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872014000300006 |
work_keys_str_mv |
AT saldiviasandra desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile AT vicentebenjamin desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile AT marstonlouise desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile AT melipillanroberto desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile AT nazarethirwin desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile AT bellonsaamenojuan desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile AT xaviermiguel desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile AT maaroosheidiingrid desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile AT svabigor desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile AT geerlingsmi desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile AT kingmichael desarrolloyvalidaciondeunalgoritmoparapredecirriesgodedepresionenconsultantesdeatencionprimariaenchile |
_version_ |
1718436742989611008 |