Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso

Background: The medical alert system (MAS) was created for the timely handling of clinical decompensations, experienced by patients hospitalized at the Medical Surgical Service (MSS) in a private clinic. It is activated by the nurse when hemodynamic, respiratory, neurological, infectious or metaboli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cofré,Claudia, Cavada,Gabriel, Maquilón,César, Daza,Paula, Vargas,Ángel, Vukusich,Antonio
Lenguaje:Spanish / Castilian
Publicado: Sociedad Médica de Santiago 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872017000200002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0034-98872017000200002
record_format dspace
spelling oai:scielo:S0034-988720170002000022017-05-02Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingresoCofré,ClaudiaCavada,GabrielMaquilón,CésarDaza,PaulaVargas,ÁngelVukusich,Antonio Patients’ Rooms Risk assessment Hospital Rapid Response Team Emergencies Medical Services Background: The medical alert system (MAS) was created for the timely handling of clinical decompensations, experienced by patients hospitalized at the Medical Surgical Service (MSS) in a private clinic. It is activated by the nurse when hemodynamic, respiratory, neurological, infectious or metabolic alterations appear, when a patient falls or complains of pain. A physician assesses the patient and decides further therapy. Aim: To analyze the clinical and demographic characteristics of patients who activated or not the MAS and develop a score to identify patients who will potentially activate MAS. Material and Methods: Data from 13,933 patients discharged from the clinic in a period of one year was analyzed. Results: MAS was activated by 472 patients (3.4%). Twenty two of these patients died during hospital stay compared to 68 patients who did not activate the alert (0.5%, p < 0.01). The predictive score developed considered age, diagnosis (based on the tenth international classification of diseases) and whether the patient was medical or surgical. The score ranges from 0 to 9 and a cutoff &#8805; 6 provides a sensitivity and specificity of 37 and 81% respectively and a positive likelihood ratio (LR+) of 1.9 to predict the activation of MAS. The same cutoff value predicts death with a sensitivity and specificity of 80% and a negative predictive value of 99.8%. Conclusions: This score may be useful to identify hospitalized patients who may have complications during their hospital stay.info:eu-repo/semantics/openAccessSociedad Médica de SantiagoRevista médica de Chile v.145 n.2 20172017-02-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872017000200002es10.4067/S0034-98872017000200002
institution Scielo Chile
collection Scielo Chile
language Spanish / Castilian
topic Patients’ Rooms
Risk assessment
Hospital Rapid Response Team
Emergencies Medical Services
spellingShingle Patients’ Rooms
Risk assessment
Hospital Rapid Response Team
Emergencies Medical Services
Cofré,Claudia
Cavada,Gabriel
Maquilón,César
Daza,Paula
Vargas,Ángel
Vukusich,Antonio
Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso
description Background: The medical alert system (MAS) was created for the timely handling of clinical decompensations, experienced by patients hospitalized at the Medical Surgical Service (MSS) in a private clinic. It is activated by the nurse when hemodynamic, respiratory, neurological, infectious or metabolic alterations appear, when a patient falls or complains of pain. A physician assesses the patient and decides further therapy. Aim: To analyze the clinical and demographic characteristics of patients who activated or not the MAS and develop a score to identify patients who will potentially activate MAS. Material and Methods: Data from 13,933 patients discharged from the clinic in a period of one year was analyzed. Results: MAS was activated by 472 patients (3.4%). Twenty two of these patients died during hospital stay compared to 68 patients who did not activate the alert (0.5%, p < 0.01). The predictive score developed considered age, diagnosis (based on the tenth international classification of diseases) and whether the patient was medical or surgical. The score ranges from 0 to 9 and a cutoff &#8805; 6 provides a sensitivity and specificity of 37 and 81% respectively and a positive likelihood ratio (LR+) of 1.9 to predict the activation of MAS. The same cutoff value predicts death with a sensitivity and specificity of 80% and a negative predictive value of 99.8%. Conclusions: This score may be useful to identify hospitalized patients who may have complications during their hospital stay.
author Cofré,Claudia
Cavada,Gabriel
Maquilón,César
Daza,Paula
Vargas,Ángel
Vukusich,Antonio
author_facet Cofré,Claudia
Cavada,Gabriel
Maquilón,César
Daza,Paula
Vargas,Ángel
Vukusich,Antonio
author_sort Cofré,Claudia
title Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso
title_short Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso
title_full Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso
title_fullStr Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso
title_full_unstemmed Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso
title_sort puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso
publisher Sociedad Médica de Santiago
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872017000200002
work_keys_str_mv AT cofreclaudia puntajepredictivodeemergenciasmedicasenunserviciomedicoquirurgicousandovariablesclinicasylosdiagnosticosdeingreso
AT cavadagabriel puntajepredictivodeemergenciasmedicasenunserviciomedicoquirurgicousandovariablesclinicasylosdiagnosticosdeingreso
AT maquiloncesar puntajepredictivodeemergenciasmedicasenunserviciomedicoquirurgicousandovariablesclinicasylosdiagnosticosdeingreso
AT dazapaula puntajepredictivodeemergenciasmedicasenunserviciomedicoquirurgicousandovariablesclinicasylosdiagnosticosdeingreso
AT vargasangel puntajepredictivodeemergenciasmedicasenunserviciomedicoquirurgicousandovariablesclinicasylosdiagnosticosdeingreso
AT vukusichantonio puntajepredictivodeemergenciasmedicasenunserviciomedicoquirurgicousandovariablesclinicasylosdiagnosticosdeingreso
_version_ 1718436928246775808