Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso
Background: The medical alert system (MAS) was created for the timely handling of clinical decompensations, experienced by patients hospitalized at the Medical Surgical Service (MSS) in a private clinic. It is activated by the nurse when hemodynamic, respiratory, neurological, infectious or metaboli...
Guardado en:
Autores principales: | , , , , , |
---|---|
Lenguaje: | Spanish / Castilian |
Publicado: |
Sociedad Médica de Santiago
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872017000200002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0034-98872017000200002 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0034-988720170002000022017-05-02Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingresoCofré,ClaudiaCavada,GabrielMaquilón,CésarDaza,PaulaVargas,ÁngelVukusich,Antonio Patients Rooms Risk assessment Hospital Rapid Response Team Emergencies Medical Services Background: The medical alert system (MAS) was created for the timely handling of clinical decompensations, experienced by patients hospitalized at the Medical Surgical Service (MSS) in a private clinic. It is activated by the nurse when hemodynamic, respiratory, neurological, infectious or metabolic alterations appear, when a patient falls or complains of pain. A physician assesses the patient and decides further therapy. Aim: To analyze the clinical and demographic characteristics of patients who activated or not the MAS and develop a score to identify patients who will potentially activate MAS. Material and Methods: Data from 13,933 patients discharged from the clinic in a period of one year was analyzed. Results: MAS was activated by 472 patients (3.4%). Twenty two of these patients died during hospital stay compared to 68 patients who did not activate the alert (0.5%, p < 0.01). The predictive score developed considered age, diagnosis (based on the tenth international classification of diseases) and whether the patient was medical or surgical. The score ranges from 0 to 9 and a cutoff ≥ 6 provides a sensitivity and specificity of 37 and 81% respectively and a positive likelihood ratio (LR+) of 1.9 to predict the activation of MAS. The same cutoff value predicts death with a sensitivity and specificity of 80% and a negative predictive value of 99.8%. Conclusions: This score may be useful to identify hospitalized patients who may have complications during their hospital stay.info:eu-repo/semantics/openAccessSociedad Médica de SantiagoRevista médica de Chile v.145 n.2 20172017-02-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872017000200002es10.4067/S0034-98872017000200002 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
Spanish / Castilian |
topic |
Patients Rooms Risk assessment Hospital Rapid Response Team Emergencies Medical Services |
spellingShingle |
Patients Rooms Risk assessment Hospital Rapid Response Team Emergencies Medical Services Cofré,Claudia Cavada,Gabriel Maquilón,César Daza,Paula Vargas,Ángel Vukusich,Antonio Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso |
description |
Background: The medical alert system (MAS) was created for the timely handling of clinical decompensations, experienced by patients hospitalized at the Medical Surgical Service (MSS) in a private clinic. It is activated by the nurse when hemodynamic, respiratory, neurological, infectious or metabolic alterations appear, when a patient falls or complains of pain. A physician assesses the patient and decides further therapy. Aim: To analyze the clinical and demographic characteristics of patients who activated or not the MAS and develop a score to identify patients who will potentially activate MAS. Material and Methods: Data from 13,933 patients discharged from the clinic in a period of one year was analyzed. Results: MAS was activated by 472 patients (3.4%). Twenty two of these patients died during hospital stay compared to 68 patients who did not activate the alert (0.5%, p < 0.01). The predictive score developed considered age, diagnosis (based on the tenth international classification of diseases) and whether the patient was medical or surgical. The score ranges from 0 to 9 and a cutoff ≥ 6 provides a sensitivity and specificity of 37 and 81% respectively and a positive likelihood ratio (LR+) of 1.9 to predict the activation of MAS. The same cutoff value predicts death with a sensitivity and specificity of 80% and a negative predictive value of 99.8%. Conclusions: This score may be useful to identify hospitalized patients who may have complications during their hospital stay. |
author |
Cofré,Claudia Cavada,Gabriel Maquilón,César Daza,Paula Vargas,Ángel Vukusich,Antonio |
author_facet |
Cofré,Claudia Cavada,Gabriel Maquilón,César Daza,Paula Vargas,Ángel Vukusich,Antonio |
author_sort |
Cofré,Claudia |
title |
Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso |
title_short |
Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso |
title_full |
Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso |
title_fullStr |
Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso |
title_full_unstemmed |
Puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso |
title_sort |
puntaje predictivo de emergencias médicas en un servicio médico quirúrgico, usando variables clínicas y los diagnósticos de ingreso |
publisher |
Sociedad Médica de Santiago |
publishDate |
2017 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872017000200002 |
work_keys_str_mv |
AT cofreclaudia puntajepredictivodeemergenciasmedicasenunserviciomedicoquirurgicousandovariablesclinicasylosdiagnosticosdeingreso AT cavadagabriel puntajepredictivodeemergenciasmedicasenunserviciomedicoquirurgicousandovariablesclinicasylosdiagnosticosdeingreso AT maquiloncesar puntajepredictivodeemergenciasmedicasenunserviciomedicoquirurgicousandovariablesclinicasylosdiagnosticosdeingreso AT dazapaula puntajepredictivodeemergenciasmedicasenunserviciomedicoquirurgicousandovariablesclinicasylosdiagnosticosdeingreso AT vargasangel puntajepredictivodeemergenciasmedicasenunserviciomedicoquirurgicousandovariablesclinicasylosdiagnosticosdeingreso AT vukusichantonio puntajepredictivodeemergenciasmedicasenunserviciomedicoquirurgicousandovariablesclinicasylosdiagnosticosdeingreso |
_version_ |
1718436928246775808 |