Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales

Background: Confusion in observational epidemiological studies distorts the relationship between exposure and event. “Step by step” regression models, diverts the decision to a statistical algorithm with little causal basis. Directed Acyclic Graphs (DAGs), qualitatively and visu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Werlinger,Fabiola, Cáceres,Dante D.
Lenguaje:Spanish / Castilian
Publicado: Sociedad Médica de Santiago 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872018000700907
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0034-98872018000700907
record_format dspace
spelling oai:scielo:S0034-988720180007009072018-09-26Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionalesWerlinger,FabiolaCáceres,Dante D. Confounding Factors (Epidemiology) Epidemiologic Methods Regression Analysis Background: Confusion in observational epidemiological studies distorts the relationship between exposure and event. “Step by step” regression models, diverts the decision to a statistical algorithm with little causal basis. Directed Acyclic Graphs (DAGs), qualitatively and visually assess the confusion. They can complement the decision on confounder control during statistical modeling. Aim: To evaluate the minimum set of confounders to be controlled in a cause-effect relationship with the use of “step-by-step regression” and DAGs, in a study of arsenic exposure. Material and Methods: We worked with data from Cáceres et al., 2010 in 66 individuals from northern Chile. The interindividual variability in the urinary excretion of dimethyl arsenic acid attributable to the GSTT1 polymorphism was estimated. A causal DAG was constructed using DAGitty v2.3 with the list of variables. A multiple linear regression model with the step-by-step backwards methodology was carried out. Results: The causal diagram included 12 non-causal open pathways. The minimum adjustment set corresponded to the variables “sex”, “body mass index” and “fish and seafood ingest”. Confusion retention of the multivariate model included normal and overweight status, gender and the interaction between “water intake” and GSTT1. Conclusions: The use of DAG prior to the modeling would allow a more comprehensive, coherent and biologically plausible analysis of causal relationships in public health.info:eu-repo/semantics/openAccessSociedad Médica de SantiagoRevista médica de Chile v.146 n.7 20182018-07-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872018000700907es10.4067/s0034-98872018000700907
institution Scielo Chile
collection Scielo Chile
language Spanish / Castilian
topic Confounding Factors (Epidemiology)
Epidemiologic Methods
Regression Analysis
spellingShingle Confounding Factors (Epidemiology)
Epidemiologic Methods
Regression Analysis
Werlinger,Fabiola
Cáceres,Dante D.
Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales
description Background: Confusion in observational epidemiological studies distorts the relationship between exposure and event. “Step by step” regression models, diverts the decision to a statistical algorithm with little causal basis. Directed Acyclic Graphs (DAGs), qualitatively and visually assess the confusion. They can complement the decision on confounder control during statistical modeling. Aim: To evaluate the minimum set of confounders to be controlled in a cause-effect relationship with the use of “step-by-step regression” and DAGs, in a study of arsenic exposure. Material and Methods: We worked with data from Cáceres et al., 2010 in 66 individuals from northern Chile. The interindividual variability in the urinary excretion of dimethyl arsenic acid attributable to the GSTT1 polymorphism was estimated. A causal DAG was constructed using DAGitty v2.3 with the list of variables. A multiple linear regression model with the step-by-step backwards methodology was carried out. Results: The causal diagram included 12 non-causal open pathways. The minimum adjustment set corresponded to the variables “sex”, “body mass index” and “fish and seafood ingest”. Confusion retention of the multivariate model included normal and overweight status, gender and the interaction between “water intake” and GSTT1. Conclusions: The use of DAG prior to the modeling would allow a more comprehensive, coherent and biologically plausible analysis of causal relationships in public health.
author Werlinger,Fabiola
Cáceres,Dante D.
author_facet Werlinger,Fabiola
Cáceres,Dante D.
author_sort Werlinger,Fabiola
title Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales
title_short Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales
title_full Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales
title_fullStr Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales
title_full_unstemmed Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales
title_sort aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales
publisher Sociedad Médica de Santiago
publishDate 2018
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872018000700907
work_keys_str_mv AT werlingerfabiola aplicaciondegrafosaciclicosdirigidosenlaevaluaciondeunsetminimodeajustedeconfusoresuncomplementoalmodelamientoestadisticoenestudiosepidemiologicosobservacionales
AT caceresdanted aplicaciondegrafosaciclicosdirigidosenlaevaluaciondeunsetminimodeajustedeconfusoresuncomplementoalmodelamientoestadisticoenestudiosepidemiologicosobservacionales
_version_ 1718437015260758016