Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales
Background: Confusion in observational epidemiological studies distorts the relationship between exposure and event. “Step by step” regression models, diverts the decision to a statistical algorithm with little causal basis. Directed Acyclic Graphs (DAGs), qualitatively and visu...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | Spanish / Castilian |
Publicado: |
Sociedad Médica de Santiago
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872018000700907 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0034-98872018000700907 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0034-988720180007009072018-09-26Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionalesWerlinger,FabiolaCáceres,Dante D. Confounding Factors (Epidemiology) Epidemiologic Methods Regression Analysis Background: Confusion in observational epidemiological studies distorts the relationship between exposure and event. “Step by step” regression models, diverts the decision to a statistical algorithm with little causal basis. Directed Acyclic Graphs (DAGs), qualitatively and visually assess the confusion. They can complement the decision on confounder control during statistical modeling. Aim: To evaluate the minimum set of confounders to be controlled in a cause-effect relationship with the use of “step-by-step regression” and DAGs, in a study of arsenic exposure. Material and Methods: We worked with data from Cáceres et al., 2010 in 66 individuals from northern Chile. The interindividual variability in the urinary excretion of dimethyl arsenic acid attributable to the GSTT1 polymorphism was estimated. A causal DAG was constructed using DAGitty v2.3 with the list of variables. A multiple linear regression model with the step-by-step backwards methodology was carried out. Results: The causal diagram included 12 non-causal open pathways. The minimum adjustment set corresponded to the variables “sex”, “body mass index” and “fish and seafood ingest”. Confusion retention of the multivariate model included normal and overweight status, gender and the interaction between “water intake” and GSTT1. Conclusions: The use of DAG prior to the modeling would allow a more comprehensive, coherent and biologically plausible analysis of causal relationships in public health.info:eu-repo/semantics/openAccessSociedad Médica de SantiagoRevista médica de Chile v.146 n.7 20182018-07-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872018000700907es10.4067/s0034-98872018000700907 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
Spanish / Castilian |
topic |
Confounding Factors (Epidemiology) Epidemiologic Methods Regression Analysis |
spellingShingle |
Confounding Factors (Epidemiology) Epidemiologic Methods Regression Analysis Werlinger,Fabiola Cáceres,Dante D. Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales |
description |
Background: Confusion in observational epidemiological studies distorts the relationship between exposure and event. “Step by step” regression models, diverts the decision to a statistical algorithm with little causal basis. Directed Acyclic Graphs (DAGs), qualitatively and visually assess the confusion. They can complement the decision on confounder control during statistical modeling. Aim: To evaluate the minimum set of confounders to be controlled in a cause-effect relationship with the use of “step-by-step regression” and DAGs, in a study of arsenic exposure. Material and Methods: We worked with data from Cáceres et al., 2010 in 66 individuals from northern Chile. The interindividual variability in the urinary excretion of dimethyl arsenic acid attributable to the GSTT1 polymorphism was estimated. A causal DAG was constructed using DAGitty v2.3 with the list of variables. A multiple linear regression model with the step-by-step backwards methodology was carried out. Results: The causal diagram included 12 non-causal open pathways. The minimum adjustment set corresponded to the variables “sex”, “body mass index” and “fish and seafood ingest”. Confusion retention of the multivariate model included normal and overweight status, gender and the interaction between “water intake” and GSTT1. Conclusions: The use of DAG prior to the modeling would allow a more comprehensive, coherent and biologically plausible analysis of causal relationships in public health. |
author |
Werlinger,Fabiola Cáceres,Dante D. |
author_facet |
Werlinger,Fabiola Cáceres,Dante D. |
author_sort |
Werlinger,Fabiola |
title |
Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales |
title_short |
Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales |
title_full |
Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales |
title_fullStr |
Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales |
title_full_unstemmed |
Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales |
title_sort |
aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: un complemento al modelamiento estadístico en estudios epidemiológicos observacionales |
publisher |
Sociedad Médica de Santiago |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872018000700907 |
work_keys_str_mv |
AT werlingerfabiola aplicaciondegrafosaciclicosdirigidosenlaevaluaciondeunsetminimodeajustedeconfusoresuncomplementoalmodelamientoestadisticoenestudiosepidemiologicosobservacionales AT caceresdanted aplicaciondegrafosaciclicosdirigidosenlaevaluaciondeunsetminimodeajustedeconfusoresuncomplementoalmodelamientoestadisticoenestudiosepidemiologicosobservacionales |
_version_ |
1718437015260758016 |