Arteritis de células gigantes: actualización y proposición de un algoritmo de estudio

Giant cell arteritis (GCA) is a primary granulomatous systemic vasculitis involving the aorta and its main branches that affects people aged over 50 years with a genetic predisposition. Its main phenotypes are cranial and extracranial involvement, with or without symptoms of polymyalgia rheumatica....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wolff C,Verónica, Paolinelli G,Paola, Guevara H,David Ladrón De
Lenguaje:Spanish / Castilian
Publicado: Sociedad Médica de Santiago 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872020001101619
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0034-98872020001101619
record_format dspace
spelling oai:scielo:S0034-988720200011016192021-04-04Arteritis de células gigantes: actualización y proposición de un algoritmo de estudioWolff C,VerónicaPaolinelli G,PaolaGuevara H,David Ladrón De Giant Cell Arteritis Multidetector Computed Tomography Positron-Emission Tomography Ultrasonography Giant cell arteritis (GCA) is a primary granulomatous systemic vasculitis involving the aorta and its main branches that affects people aged over 50 years with a genetic predisposition. Its main phenotypes are cranial and extracranial involvement, with or without symptoms of polymyalgia rheumatica. These phenotypes can overlap. The extracranial form can be oligosymptomatic and must be sought directly. The main complications of the disease are ischemia of essential territories such as the optic nerve or cerebral circulation, and aneurysmal dilations of the aorta and its large branches. Clinicians must be aware of all the presentation forms of the disease, to start a timely treatment and avoid potentially serious or fatal consequences. To date, the diagnosis of GCA is based on clinical and pathological criteria, with the temporal artery biopsy as the “gold standard” for diagnosis, although its sensitivity is variable. This can lead to an underdiagnosis in patients with negative biopsies or predominant extra-cranial symptoms. The emergence of new and valuable imaging tools substantially improved the timely diagnosis, mainly in subclinical and oligosymptomatic forms. Among them we highlight ultrasonography of the temporal and axillary arteries, Computed Tomography Angiography, Magnetic Resonance Angiography, and PET-CT. These imaging techniques are complementary, and their use is highly recommended. GCA treatment is based on steroidal therapy, often associated with a corticosteroid-sparing immunosuppressive agent. The follow-up is eminently clinical.info:eu-repo/semantics/openAccessSociedad Médica de SantiagoRevista médica de Chile v.148 n.11 20202020-11-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872020001101619es10.4067/S0034-98872020001101619
institution Scielo Chile
collection Scielo Chile
language Spanish / Castilian
topic Giant Cell Arteritis
Multidetector Computed Tomography
Positron-Emission Tomography
Ultrasonography
spellingShingle Giant Cell Arteritis
Multidetector Computed Tomography
Positron-Emission Tomography
Ultrasonography
Wolff C,Verónica
Paolinelli G,Paola
Guevara H,David Ladrón De
Arteritis de células gigantes: actualización y proposición de un algoritmo de estudio
description Giant cell arteritis (GCA) is a primary granulomatous systemic vasculitis involving the aorta and its main branches that affects people aged over 50 years with a genetic predisposition. Its main phenotypes are cranial and extracranial involvement, with or without symptoms of polymyalgia rheumatica. These phenotypes can overlap. The extracranial form can be oligosymptomatic and must be sought directly. The main complications of the disease are ischemia of essential territories such as the optic nerve or cerebral circulation, and aneurysmal dilations of the aorta and its large branches. Clinicians must be aware of all the presentation forms of the disease, to start a timely treatment and avoid potentially serious or fatal consequences. To date, the diagnosis of GCA is based on clinical and pathological criteria, with the temporal artery biopsy as the “gold standard” for diagnosis, although its sensitivity is variable. This can lead to an underdiagnosis in patients with negative biopsies or predominant extra-cranial symptoms. The emergence of new and valuable imaging tools substantially improved the timely diagnosis, mainly in subclinical and oligosymptomatic forms. Among them we highlight ultrasonography of the temporal and axillary arteries, Computed Tomography Angiography, Magnetic Resonance Angiography, and PET-CT. These imaging techniques are complementary, and their use is highly recommended. GCA treatment is based on steroidal therapy, often associated with a corticosteroid-sparing immunosuppressive agent. The follow-up is eminently clinical.
author Wolff C,Verónica
Paolinelli G,Paola
Guevara H,David Ladrón De
author_facet Wolff C,Verónica
Paolinelli G,Paola
Guevara H,David Ladrón De
author_sort Wolff C,Verónica
title Arteritis de células gigantes: actualización y proposición de un algoritmo de estudio
title_short Arteritis de células gigantes: actualización y proposición de un algoritmo de estudio
title_full Arteritis de células gigantes: actualización y proposición de un algoritmo de estudio
title_fullStr Arteritis de células gigantes: actualización y proposición de un algoritmo de estudio
title_full_unstemmed Arteritis de células gigantes: actualización y proposición de un algoritmo de estudio
title_sort arteritis de células gigantes: actualización y proposición de un algoritmo de estudio
publisher Sociedad Médica de Santiago
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872020001101619
work_keys_str_mv AT wolffcveronica arteritisdecelulasgigantesactualizacionyproposiciondeunalgoritmodeestudio
AT paolinelligpaola arteritisdecelulasgigantesactualizacionyproposiciondeunalgoritmodeestudio
AT guevarahdavidladronde arteritisdecelulasgigantesactualizacionyproposiciondeunalgoritmodeestudio
_version_ 1718437164914573312