The integration of diet, physiology, and ecology of nectar-feeding birds

Balance between energy acquisition and expense is critical for the survival and reproductive success of organisms. Energy budgets may be limited by environmental factors as well as by animal design. These restrictions may be especially important for small endotherms such as hummingbirds, which have...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: McWHORTER,TODD J., LOPEZ-CALLEJA,M. VICTORIA
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2000
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-078X2000000300008
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Balance between energy acquisition and expense is critical for the survival and reproductive success of organisms. Energy budgets may be limited by environmental factors as well as by animal design. These restrictions may be especially important for small endotherms such as hummingbirds, which have exceedingly high energy demands. Many nectar-feeding bird species decrease food intake when sugar concentration in food is increased. This feeding response can be explained by two alternative hypotheses: compensatory feeding and physiological constraint. The compensatory feeding hypothesis predicts that if birds vary intake to maintain a constant energy intake to match energy expenditures, then they should increase intake when expenditures are increased. Broad-tailed hummingbirds (Selasphorus platycercus) and Green-backed fire crown hummingbirds (Sephanoides sephaniodes) were presented with diets varying in energy density and exposed to various environmental temperatures. Birds decreased volumetric food intake in response to sugar concentration. However, when they were exposed to lower environmental temperatures, and hence increased thermoregulatory demands, they did not increase their rate of energy consumption and lost mass. These results support the existence of a physiological constraint to the energy budgets of hummingbirds. Digestive and peripheral organ function limitations may impose severe challenges to the energy budgets of these small endotherms, and therefore play a significant role in determining their distribution, ecology, and natural history.