A quantitative analysis of forest fragmentation in Los Tuxtlas, southeast Mexico: patterns and implications for conservation

Habitat loss is a critical threat to tropical biodiversity and its quantification constitutes a central conservation issue. Typically, assessments have been based on deforestation rates statistics. However, this overlooks the effects brought about by the spatial reconfiguration of the remaining habi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: MENDOZA,EDUARDO, FAY,JOHN, DIRZO,RODOLFO
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2005
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-078X2005000300008
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Habitat loss is a critical threat to tropical biodiversity and its quantification constitutes a central conservation issue. Typically, assessments have been based on deforestation rates statistics. However, this overlooks the effects brought about by the spatial reconfiguration of the remaining habitat: fragmentation. We present an analysis of fragmentation in a Neotropical site aimed at: (a) devising a protocol for its quantification, (b) using such protocol to provide insights on the ecological consequences of fragmentation, (c) exploring its applicability to address the hypothesis that forest size-inequality decreases with elevation, an indicator of habitat accessibility. We applied the Gini coefficient (G) and the Lorenz curve to analyze fragment-size variation using a satellite-generated map. We also estimated edge effect, fragment shape and isolation. Remaining forest includes 1,005 fragments, ranging from 0.5 to 9.356 ha (median = 0.89). Size inequality was very high (G = 0.928), producing a flattened Lorenz curve. Forty percent of the fragments did not maintain an area free of a 30-m edge effect, and larger fragments showed a marked deviation from ideal circular forms. Eighty-four percent of the fragments lay further than 500 m from the largest forest tract and their size decreased with distance. Fragment size distribution changed with altitude: the Gini coefficient was lowest and forest coverage was greatest at the highest altitude, but inequality peaked at an intermediate elevation. Given the current pace of habitat deterioration, application of similar analyses may improve global assessments of tropical ecosystems and their perspectives for biodiversity conservation