Influence of forest type and host plant genetic relatedness on the canopy arthropod community structure of Quercus crassifolia

BACKGROUND: Quercus crassifolia is an oak species with characteristics of foundation species, which is a canopy dominant element of different forest types that supports a wide diversity of associated species. Therefore, it is an excellent system to address important ecological questions. We analyzed...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tovar-Sánchez,Efraín, Martí-Flores,Erwin, Valencia-Cuevas,Leticia, Mussali-Galante,Patricia
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2015
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-078X2015000100007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-078X2015000100007
record_format dspace
spelling oai:scielo:S0716-078X20150001000072015-12-21Influence of forest type and host plant genetic relatedness on the canopy arthropod community structure of Quercus crassifoliaTovar-Sánchez,EfraínMartí-Flores,ErwinValencia-Cuevas,LeticiaMussali-Galante,Patricia Quercus Foundation species Individual genetic diversity Microsatellites Forest type Arthropods community BACKGROUND: Quercus crassifolia is an oak species with characteristics of foundation species, which is a canopy dominant element of different forest types that supports a wide diversity of associated species. Therefore, it is an excellent system to address important ecological questions. We analyzed the effect of individual genetic relatedness of the host plant, forest type (Abies-Quercus, Quercus-Pinus, and Quercus forest), and season (dry vs. rainy) on the canopy arthropod community structure. Thirty oak canopies were fogged (five individuals/season/forest type). RESULTS: We identified 442 arthropod species belonging to 22 orders. The highest values of density, diversity, and richness were recorded during the rainy season for each forest type. Also, the non-metric multidimensional scaling (NMDS) analysis showed a separation of the host tree species for each forest type. During the rainy season, the highest values of density, diversity, and richness in each forest type were recorded. A separation of host tree was found for each forest type. In general, diversity and richness of canopy arthropods showed the following pattern: Abies-Quercus > Quercus-Pinus > Quercus, while density showed an inverse pattern. An increase of the diversity of canopy arthropods is significantly related to an increase of host plant genetic diversity, independently of the type of forest and of the season. CONCLUSIONS: In terms of conservation, if arthropod species respond to genetic differences among host plants, it becomes important to conserve genetic diversity of foundation species, since it is fundamental to preserve diversity of their associated arthropod communities.info:eu-repo/semantics/openAccessSociedad de Biología de ChileRevista chilena de historia natural v.88 20152015-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-078X2015000100007en10.1186/s40693-015-0038-2
institution Scielo Chile
collection Scielo Chile
language English
topic Quercus
Foundation species
Individual genetic diversity
Microsatellites
Forest type
Arthropods community
spellingShingle Quercus
Foundation species
Individual genetic diversity
Microsatellites
Forest type
Arthropods community
Tovar-Sánchez,Efraín
Martí-Flores,Erwin
Valencia-Cuevas,Leticia
Mussali-Galante,Patricia
Influence of forest type and host plant genetic relatedness on the canopy arthropod community structure of Quercus crassifolia
description BACKGROUND: Quercus crassifolia is an oak species with characteristics of foundation species, which is a canopy dominant element of different forest types that supports a wide diversity of associated species. Therefore, it is an excellent system to address important ecological questions. We analyzed the effect of individual genetic relatedness of the host plant, forest type (Abies-Quercus, Quercus-Pinus, and Quercus forest), and season (dry vs. rainy) on the canopy arthropod community structure. Thirty oak canopies were fogged (five individuals/season/forest type). RESULTS: We identified 442 arthropod species belonging to 22 orders. The highest values of density, diversity, and richness were recorded during the rainy season for each forest type. Also, the non-metric multidimensional scaling (NMDS) analysis showed a separation of the host tree species for each forest type. During the rainy season, the highest values of density, diversity, and richness in each forest type were recorded. A separation of host tree was found for each forest type. In general, diversity and richness of canopy arthropods showed the following pattern: Abies-Quercus > Quercus-Pinus > Quercus, while density showed an inverse pattern. An increase of the diversity of canopy arthropods is significantly related to an increase of host plant genetic diversity, independently of the type of forest and of the season. CONCLUSIONS: In terms of conservation, if arthropod species respond to genetic differences among host plants, it becomes important to conserve genetic diversity of foundation species, since it is fundamental to preserve diversity of their associated arthropod communities.
author Tovar-Sánchez,Efraín
Martí-Flores,Erwin
Valencia-Cuevas,Leticia
Mussali-Galante,Patricia
author_facet Tovar-Sánchez,Efraín
Martí-Flores,Erwin
Valencia-Cuevas,Leticia
Mussali-Galante,Patricia
author_sort Tovar-Sánchez,Efraín
title Influence of forest type and host plant genetic relatedness on the canopy arthropod community structure of Quercus crassifolia
title_short Influence of forest type and host plant genetic relatedness on the canopy arthropod community structure of Quercus crassifolia
title_full Influence of forest type and host plant genetic relatedness on the canopy arthropod community structure of Quercus crassifolia
title_fullStr Influence of forest type and host plant genetic relatedness on the canopy arthropod community structure of Quercus crassifolia
title_full_unstemmed Influence of forest type and host plant genetic relatedness on the canopy arthropod community structure of Quercus crassifolia
title_sort influence of forest type and host plant genetic relatedness on the canopy arthropod community structure of quercus crassifolia
publisher Sociedad de Biología de Chile
publishDate 2015
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-078X2015000100007
work_keys_str_mv AT tovarsanchezefrain influenceofforesttypeandhostplantgeneticrelatednessonthecanopyarthropodcommunitystructureofquercuscrassifolia
AT martifloreserwin influenceofforesttypeandhostplantgeneticrelatednessonthecanopyarthropodcommunitystructureofquercuscrassifolia
AT valenciacuevasleticia influenceofforesttypeandhostplantgeneticrelatednessonthecanopyarthropodcommunitystructureofquercuscrassifolia
AT mussaligalantepatricia influenceofforesttypeandhostplantgeneticrelatednessonthecanopyarthropodcommunitystructureofquercuscrassifolia
_version_ 1718439697876779008