Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin, Sterechinus neumayeri

BACKGROUND: Antarctic marine organisms have evolved a variety of physiological, life-history and molecular adaptations that allow them to cope with the extreme conditions in one of the coldest and most temperature-stable marine environments on Earth. The increase in temperature of the Southern Ocean...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: González,Karina, Gaitán-Espitia,Juan, Font,Alejandro, Cárdenas,César A., González-Aravena,Marcelo
Lenguaje:English
Publicado: Sociedad de Biología de Chile 2016
Materias:
HSP
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-078X2016000100002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-078X2016000100002
record_format dspace
spelling oai:scielo:S0716-078X20160001000022016-09-27Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin, Sterechinus neumayeriGonzález,KarinaGaitán-Espitia,JuanFont,AlejandroCárdenas,César A.González-Aravena,Marcelo HSP Thermal tolerance Chaperones Ocean warming Sea urchin BACKGROUND: Antarctic marine organisms have evolved a variety of physiological, life-history and molecular adaptations that allow them to cope with the extreme conditions in one of the coldest and most temperature-stable marine environments on Earth. The increase in temperature of the Southern Ocean, product of climate change, represents a great challenge for the survival of these organisms. It has been documented that some Antarctic marine invertebrates are not capable of generating a thermal stress response by means of an increase in the synthesis of heat shock proteins, which could be related with their low capacity for acclimatization. In order to understand the role of heat shock proteins as a compensatory response in Antarctic marine species to projected scenarios of increased seawater temperatures, we assessed the expression of the genes Hsp90, Grp78, Hyou1 and Hsc70 in the Antarctic sea urchin Sterechinus neumayeri under three thermal treatments (1 °C, 3 °C and 5 °C), for a period of exposure of 1, 24 and 48 h RESULTS: The results obtained showed that these genes were expressed themselves in all of the tissues analyzed in a constitutive form. During acute thermal stress, an overexpression of the Hsp90, Grp78 and Hyou1 genes was observed in coelomocyte samples at 3 °C after 48 h, while in esophageal samples, an increase in Hsp90 and Grp78 expression was observed after 48 h. Thermal stress at 5 °C, in general, did not produce a significant increase in the expression of the genes that were studied. The expression of Hsp70 did not show modifications in its expression as a result of thermal stress CONCLUSIONS: S. neumayeri is capable of overexpressing stress proteins as a result of thermal stress, however, this response is delayed and to a lesser degree compared to other Antarctic or temperate species. These results indicate that adult individuals could cope with the expected impacts caused by an increase in coastal sea temperatures in the Southern Ocean.info:eu-repo/semantics/openAccessSociedad de Biología de ChileRevista chilena de historia natural v.89 20162016-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-078X2016000100002en10.1186/s40693-016-0052-z
institution Scielo Chile
collection Scielo Chile
language English
topic HSP
Thermal tolerance
Chaperones
Ocean warming
Sea urchin
spellingShingle HSP
Thermal tolerance
Chaperones
Ocean warming
Sea urchin
González,Karina
Gaitán-Espitia,Juan
Font,Alejandro
Cárdenas,César A.
González-Aravena,Marcelo
Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin, Sterechinus neumayeri
description BACKGROUND: Antarctic marine organisms have evolved a variety of physiological, life-history and molecular adaptations that allow them to cope with the extreme conditions in one of the coldest and most temperature-stable marine environments on Earth. The increase in temperature of the Southern Ocean, product of climate change, represents a great challenge for the survival of these organisms. It has been documented that some Antarctic marine invertebrates are not capable of generating a thermal stress response by means of an increase in the synthesis of heat shock proteins, which could be related with their low capacity for acclimatization. In order to understand the role of heat shock proteins as a compensatory response in Antarctic marine species to projected scenarios of increased seawater temperatures, we assessed the expression of the genes Hsp90, Grp78, Hyou1 and Hsc70 in the Antarctic sea urchin Sterechinus neumayeri under three thermal treatments (1 °C, 3 °C and 5 °C), for a period of exposure of 1, 24 and 48 h RESULTS: The results obtained showed that these genes were expressed themselves in all of the tissues analyzed in a constitutive form. During acute thermal stress, an overexpression of the Hsp90, Grp78 and Hyou1 genes was observed in coelomocyte samples at 3 °C after 48 h, while in esophageal samples, an increase in Hsp90 and Grp78 expression was observed after 48 h. Thermal stress at 5 °C, in general, did not produce a significant increase in the expression of the genes that were studied. The expression of Hsp70 did not show modifications in its expression as a result of thermal stress CONCLUSIONS: S. neumayeri is capable of overexpressing stress proteins as a result of thermal stress, however, this response is delayed and to a lesser degree compared to other Antarctic or temperate species. These results indicate that adult individuals could cope with the expected impacts caused by an increase in coastal sea temperatures in the Southern Ocean.
author González,Karina
Gaitán-Espitia,Juan
Font,Alejandro
Cárdenas,César A.
González-Aravena,Marcelo
author_facet González,Karina
Gaitán-Espitia,Juan
Font,Alejandro
Cárdenas,César A.
González-Aravena,Marcelo
author_sort González,Karina
title Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin, Sterechinus neumayeri
title_short Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin, Sterechinus neumayeri
title_full Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin, Sterechinus neumayeri
title_fullStr Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin, Sterechinus neumayeri
title_full_unstemmed Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin, Sterechinus neumayeri
title_sort expression pattern of heat shock proteins during acute thermal stress in the antarctic sea urchin, sterechinus neumayeri
publisher Sociedad de Biología de Chile
publishDate 2016
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-078X2016000100002
work_keys_str_mv AT gonzalezkarina expressionpatternofheatshockproteinsduringacutethermalstressintheantarcticseaurchinsterechinusneumayeri
AT gaitanespitiajuan expressionpatternofheatshockproteinsduringacutethermalstressintheantarcticseaurchinsterechinusneumayeri
AT fontalejandro expressionpatternofheatshockproteinsduringacutethermalstressintheantarcticseaurchinsterechinusneumayeri
AT cardenascesara expressionpatternofheatshockproteinsduringacutethermalstressintheantarcticseaurchinsterechinusneumayeri
AT gonzalezaravenamarcelo expressionpatternofheatshockproteinsduringacutethermalstressintheantarcticseaurchinsterechinusneumayeri
_version_ 1718439700964835328