A MULTIPLIER GLIDING HUMP PROPERTY FOR SEQUENCE SPACES

We consider the Banach-Mackey property for pairs of vector spaces E and E' which ar in duality. Le A be and algebra of sets and assume that P is an additive map from A into the projection operators on E. We define a continuous gliding hump property for the map P and show that pairs with this gl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: SWARTZ,CHARLES
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2001
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000100002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We consider the Banach-Mackey property for pairs of vector spaces E and E' which ar in duality. Le A be and algebra of sets and assume that P is an additive map from A into the projection operators on E. We define a continuous gliding hump property for the map P and show that pairs with this gliding hump property and another measure theoretic property are Banch-Mackey pairs, i.e., weakly bounded subsets of E are strongly bounded. Examples of vector valued function spaces, such as the space of Pettis integrable functions, which satisfy these conditions are given