A NONRESONANCE BETWEEN NON-CONSECUTIVE EIGENVALUES OF SEMILINEAR ELLIPTIC EQUATIONS: VARIATIONAL METHODS
We study the solvability of the problem -<FONT FACE=Symbol>Du</FONT> = <FONT FACE=Symbol>¦</FONT>(x, u) + h in <FONT FACE=Symbol>W </FONT>; u = 0 on <FONT FACE=Symbol>¶W</FONT> when the monlinearity f is assumed to lie asymptotically between two non -...
Guardado en:
Autor principal: | MOUSSAOUI,M. |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2001
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000100004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
NONRESONANCE BELOW THE SECOND EIGENVALUE FOR A NONLINEAR ELLIPTIC PROBLEM
por: MOUSSAOUI,M, et al.
Publicado: (2003) -
NONLINEAR ELLIPTIC PROBLEMS WITH RESONANCE AT THE TWO FIRST EIGENVALUE: A VARIATIONAL APPROACH
por: MOUSSAOUI,M., et al.
Publicado: (2001) -
NONRESONANCE BETWEEN TWO EIGENVALUES NOT NECESSARILY CONSECUTIVE
por: EL AMROUSS,A. R
Publicado: (2005) -
DIAGONALS AND EIGENVALUES OF SUMS OF HERMITIAN MATRICES: EXTREME CASES
por: MIRANDA,HÉCTOR
Publicado: (2003) -
Solutions and eigenvalues of Laplace's equation on bounded open sets
por: Guangchong Yang, et al.
Publicado: (2021)