ON THE LEVI PROBLEM WITH SINGULARITIES
In section 1, we show that if X is a Stein normal complex space of dimension n and D <FONT FACE=Symbol>ÌÌ</FONT> X an open subset which is the union of an increasing sequence D1 <FONT FACE=Symbol>Ì</FONT> D2 <FONT FACE=Symbol>Ì</FONT> ... <FONT FACE=Symbol>Ì...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2001
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000100006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In section 1, we show that if X is a Stein normal complex space of dimension n and D <FONT FACE=Symbol>ÌÌ</FONT> X an open subset which is the union of an increasing sequence D1 <FONT FACE=Symbol>Ì</FONT> D2 <FONT FACE=Symbol>Ì</FONT> ... <FONT FACE=Symbol>Ì</FONT> Dn <FONT FACE=Symbol>Ì</FONT> <FONT FACE=Symbol>Ì</FONT> ... of domains of holomorphy in X, then D is a domain of holomorphy. In section 2, we prove that a domain of holomorphy D which is relatively compact in a 2-dimensional normal Stein space X itself is Stein. In section 3, we show that if X is a Stein space of dimension n and D <FONT FACE=Symbol>Ì</FONT> X an open subspace which is the union of an increasing sequence D1 <FONT FACE=Symbol>Ì</FONT> D2 <FONT FACE=Symbol>Ì</FONT> ... <FONT FACE=Symbol>Ì</FONT> Dn <FONT FACE=Symbol>Ì</FONT> ... of open Stein subsets of X, then D itself is Stein, if X has isolated singularities |
---|