SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT

Let H be a separable Hilbert Space. Denote by H1 = L2(a,b; H) the set of function defned on the interval a < chi < b (<FONT FACE=Symbol>&frac34;</FONT><FONT FACE=Symbol>¥</FONT> <FONT FACE=Symbol>a < c</FONT> < b <FONT FACE=Symbol>&pound;...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: OER,Z.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2001
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000200003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172001000200003
record_format dspace
spelling oai:scielo:S0716-091720010002000032001-11-07SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENTOER,Z.Let H be a separable Hilbert Space. Denote by H1 = L2(a,b; H) the set of function defned on the interval a < chi < b (<FONT FACE=Symbol>&frac34;</FONT><FONT FACE=Symbol>¥</FONT> <FONT FACE=Symbol>a < c</FONT> < b <FONT FACE=Symbol>&pound;</FONT><FONT FACE=Symbol>¥</FONT>) whose values belong to H strongly measurable [12] and satisfying the condition If the inner product of function <FONT FACE=Symbol>&brvbar;</FONT>(chi) and g(chi) belonging to H1 is defined by then H1 forms a separable Hilbert space. We study separation problem for the operator formed by <FONT FACE=Symbol>&frac34;</FONT> y"+ Q (chi) y Sturm-Liouville differential expression in L2(<FONT FACE=Symbol>&frac34;</FONT> <FONT FACE=Symbol>¥</FONT>, <FONT FACE=Symbol>¥</FONT>; H) space has been proved where Q (chi) in an operator which transforms at H in value of chi,,self-adjoint, lower bounded and its inverse is complete continousinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.20 n.2 20012001-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000200003en10.4067/S0716-09172001000200003
institution Scielo Chile
collection Scielo Chile
language English
description Let H be a separable Hilbert Space. Denote by H1 = L2(a,b; H) the set of function defned on the interval a < chi < b (<FONT FACE=Symbol>&frac34;</FONT><FONT FACE=Symbol>¥</FONT> <FONT FACE=Symbol>a < c</FONT> < b <FONT FACE=Symbol>&pound;</FONT><FONT FACE=Symbol>¥</FONT>) whose values belong to H strongly measurable [12] and satisfying the condition If the inner product of function <FONT FACE=Symbol>&brvbar;</FONT>(chi) and g(chi) belonging to H1 is defined by then H1 forms a separable Hilbert space. We study separation problem for the operator formed by <FONT FACE=Symbol>&frac34;</FONT> y"+ Q (chi) y Sturm-Liouville differential expression in L2(<FONT FACE=Symbol>&frac34;</FONT> <FONT FACE=Symbol>¥</FONT>, <FONT FACE=Symbol>¥</FONT>; H) space has been proved where Q (chi) in an operator which transforms at H in value of chi,,self-adjoint, lower bounded and its inverse is complete continous
author OER,Z.
spellingShingle OER,Z.
SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT
author_facet OER,Z.
author_sort OER,Z.
title SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT
title_short SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT
title_full SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT
title_fullStr SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT
title_full_unstemmed SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT
title_sort separation problem for sturm-liouville equation with operator coefficient
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2001
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000200003
work_keys_str_mv AT oerz separationproblemforsturmliouvilleequationwithoperatorcoefficient
_version_ 1718439721491759104