SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT
Let H be a separable Hilbert Space. Denote by H1 = L2(a,b; H) the set of function defned on the interval a < chi < b (<FONT FACE=Symbol>¾</FONT><FONT FACE=Symbol>¥</FONT> <FONT FACE=Symbol>a < c</FONT> < b <FONT FACE=Symbol>£...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2001
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000200003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172001000200003 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720010002000032001-11-07SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENTOER,Z.Let H be a separable Hilbert Space. Denote by H1 = L2(a,b; H) the set of function defned on the interval a < chi < b (<FONT FACE=Symbol>¾</FONT><FONT FACE=Symbol>¥</FONT> <FONT FACE=Symbol>a < c</FONT> < b <FONT FACE=Symbol>£</FONT><FONT FACE=Symbol>¥</FONT>) whose values belong to H strongly measurable [12] and satisfying the condition If the inner product of function <FONT FACE=Symbol>¦</FONT>(chi) and g(chi) belonging to H1 is defined by then H1 forms a separable Hilbert space. We study separation problem for the operator formed by <FONT FACE=Symbol>¾</FONT> y"+ Q (chi) y Sturm-Liouville differential expression in L2(<FONT FACE=Symbol>¾</FONT> <FONT FACE=Symbol>¥</FONT>, <FONT FACE=Symbol>¥</FONT>; H) space has been proved where Q (chi) in an operator which transforms at H in value of chi,,self-adjoint, lower bounded and its inverse is complete continousinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.20 n.2 20012001-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000200003en10.4067/S0716-09172001000200003 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
description |
Let H be a separable Hilbert Space. Denote by H1 = L2(a,b; H) the set of function defned on the interval a < chi < b (<FONT FACE=Symbol>¾</FONT><FONT FACE=Symbol>¥</FONT> <FONT FACE=Symbol>a < c</FONT> < b <FONT FACE=Symbol>£</FONT><FONT FACE=Symbol>¥</FONT>) whose values belong to H strongly measurable [12] and satisfying the condition If the inner product of function <FONT FACE=Symbol>¦</FONT>(chi) and g(chi) belonging to H1 is defined by then H1 forms a separable Hilbert space. We study separation problem for the operator formed by <FONT FACE=Symbol>¾</FONT> y"+ Q (chi) y Sturm-Liouville differential expression in L2(<FONT FACE=Symbol>¾</FONT> <FONT FACE=Symbol>¥</FONT>, <FONT FACE=Symbol>¥</FONT>; H) space has been proved where Q (chi) in an operator which transforms at H in value of chi,,self-adjoint, lower bounded and its inverse is complete continous |
author |
OER,Z. |
spellingShingle |
OER,Z. SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT |
author_facet |
OER,Z. |
author_sort |
OER,Z. |
title |
SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT |
title_short |
SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT |
title_full |
SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT |
title_fullStr |
SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT |
title_full_unstemmed |
SEPARATION PROBLEM FOR STURM-LIOUVILLE EQUATION WITH OPERATOR COEFFICIENT |
title_sort |
separation problem for sturm-liouville equation with operator coefficient |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2001 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000200003 |
work_keys_str_mv |
AT oerz separationproblemforsturmliouvilleequationwithoperatorcoefficient |
_version_ |
1718439721491759104 |