TOPOLOGIES POLAIRES COMPATIBLES AVEC UNE DUALITÉ SÉPARANTE SUR UN CORPS VALUÉ NON-ARCHIMÉDIEN

In this paper, we deal with polar topologies in separated dual pair (X, Y) of vector spaces over a non-archimedean valued field. We study compatible polar topologies, and we give some results characterizing specific subsets of X related to these topologies, especially if the field K is spherically c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: AMEZIANE HASSANI,R., BABAHMED,M.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2001
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000200006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we deal with polar topologies in separated dual pair (X, Y) of vector spaces over a non-archimedean valued field. We study compatible polar topologies, and we give some results characterizing specific subsets of X related to these topologies, especially if the field K is spherically complete or the compatible topology is polar or strongly polar. Furthermore, we investigate some topological properties in the duality (X, Y) such as barreldness and reflexivity