TOPOLOGIES POLAIRES COMPATIBLES AVEC UNE DUALITÉ SÉPARANTE SUR UN CORPS VALUÉ NON-ARCHIMÉDIEN
In this paper, we deal with polar topologies in separated dual pair (X, Y) of vector spaces over a non-archimedean valued field. We study compatible polar topologies, and we give some results characterizing specific subsets of X related to these topologies, especially if the field K is spherically c...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2001
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172001000200006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper, we deal with polar topologies in separated dual pair (X, Y) of vector spaces over a non-archimedean valued field. We study compatible polar topologies, and we give some results characterizing specific subsets of X related to these topologies, especially if the field K is spherically complete or the compatible topology is polar or strongly polar. Furthermore, we investigate some topological properties in the duality (X, Y) such as barreldness and reflexivity |
---|