ON THE VOLUMETRIC ENTROPY IN THE NON COMPACT CASE

We give an example of a non compact riemannian manifold with finite volume for which the limit corresponding to the clas-sical definition of the volumetric entropy does not exist. This confirms the fact that in the non compact finite volume case,the natural definition is given by the critical expone...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: NAVAS,ANDRÉS
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2002
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172002000100006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172002000100006
record_format dspace
spelling oai:scielo:S0716-091720020001000062002-11-29ON THE VOLUMETRIC ENTROPY IN THE NON COMPACT CASENAVAS,ANDRÉS Entropy volume growth We give an example of a non compact riemannian manifold with finite volume for which the limit corresponding to the clas-sical definition of the volumetric entropy does not exist. This confirms the fact that in the non compact finite volume case,the natural definition is given by the critical exponent of the mean growth rate for the volume on the riemannian covering. Subject classification AMS 2000 : Primary 37A35 ; Secondary : 37D40, 53C24info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.21 n.1 20022002-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172002000100006en10.4067/S0716-09172002000100006
institution Scielo Chile
collection Scielo Chile
language English
topic Entropy
volume growth
spellingShingle Entropy
volume growth
NAVAS,ANDRÉS
ON THE VOLUMETRIC ENTROPY IN THE NON COMPACT CASE
description We give an example of a non compact riemannian manifold with finite volume for which the limit corresponding to the clas-sical definition of the volumetric entropy does not exist. This confirms the fact that in the non compact finite volume case,the natural definition is given by the critical exponent of the mean growth rate for the volume on the riemannian covering. Subject classification AMS 2000 : Primary 37A35 ; Secondary : 37D40, 53C24
author NAVAS,ANDRÉS
author_facet NAVAS,ANDRÉS
author_sort NAVAS,ANDRÉS
title ON THE VOLUMETRIC ENTROPY IN THE NON COMPACT CASE
title_short ON THE VOLUMETRIC ENTROPY IN THE NON COMPACT CASE
title_full ON THE VOLUMETRIC ENTROPY IN THE NON COMPACT CASE
title_fullStr ON THE VOLUMETRIC ENTROPY IN THE NON COMPACT CASE
title_full_unstemmed ON THE VOLUMETRIC ENTROPY IN THE NON COMPACT CASE
title_sort on the volumetric entropy in the non compact case
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2002
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172002000100006
work_keys_str_mv AT navasandres onthevolumetricentropyinthenoncompactcase
_version_ 1718439725990150144