ON THE COHOMOLOGY OF FOLIATED BUNDLES
We prove a de Rham-like theorem for foliated bundles F ! (M; F )¼ ! B showing that the cohomology H¤( F ) is isomorphicto the equivariant cohomology H¡ ³ eB; C1 (F); ¡ = ¼1 (B)and eB the universal covering of B. When B is an Eilenberg-Mac Lane space K (¡; 1) the cohomology H¤ ( F ) is the cohomology...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2002
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172002000200005 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We prove a de Rham-like theorem for foliated bundles F ! (M; F )¼ ! B showing that the cohomology H¤( F ) is isomorphicto the equivariant cohomology H¡ ³ eB; C1 (F); ¡ = ¼1 (B)and eB the universal covering of B. When B is an Eilenberg-Mac Lane space K (¡; 1) the cohomology H¤ ( F ) is the cohomology of the ¡-module C1 (F). This gives algebraic models for H¤ ( F ) and geometrial models for the cohomology of the ¡-module C1 (F). Using this isomorphism and a theorem of J. Palis and J.C. Yoccoz on the triviality of centralizers of diffeomorphisms, [14] and [15] we show that H¤( F ) is infinite dimensional for a large class of foliated bundles. Using this isomorphism R. u. Luz computed in [9] the cohomology of the foliated bunddles suspensions of actions of Z P by afine transformations of T Q. AMS (MOS) Subj class: 57R30 |
---|