ON THE COHOMOLOGY OF FOLIATED BUNDLES

We prove a de Rham-like theorem for foliated bundles F ! (M; F )¼ ! B showing that the cohomology H¤( F ) is isomorphicto the equivariant cohomology H¡ ³ eB; C1 (F); ¡ = ¼1 (B)and eB the universal covering of B. When B is an Eilenberg-Mac Lane space K (¡; 1) the cohomology H¤ ( F ) is the cohomology...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: PEREIRA,M. S., DOS SANTOS,N. M.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2002
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172002000200005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172002000200005
record_format dspace
spelling oai:scielo:S0716-091720020002000052002-10-31ON THE COHOMOLOGY OF FOLIATED BUNDLESPEREIRA,M. S.DOS SANTOS,N. M. foliated bundles foliated cohomology equivariant cohomology cohomology of groups We prove a de Rham-like theorem for foliated bundles F ! (M; F )¼ ! B showing that the cohomology H¤( F ) is isomorphicto the equivariant cohomology H¡ ³ eB; C1 (F); ¡ = ¼1 (B)and eB the universal covering of B. When B is an Eilenberg-Mac Lane space K (¡; 1) the cohomology H¤ ( F ) is the cohomology of the ¡-module C1 (F). This gives algebraic models for H¤ ( F ) and geometrial models for the cohomology of the ¡-module C1 (F). Using this isomorphism and a theorem of J. Palis and J.C. Yoccoz on the triviality of centralizers of diffeomorphisms, [14] and [15] we show that H¤( F ) is infinite dimensional for a large class of foliated bundles. Using this isomorphism R. u. Luz computed in [9] the cohomology of the foliated bunddles suspensions of actions of Z P by afine transformations of T Q. AMS (MOS) Subj class: 57R30info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.21 n.2 20022002-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172002000200005en10.4067/S0716-09172002000200005
institution Scielo Chile
collection Scielo Chile
language English
topic foliated bundles
foliated cohomology
equivariant cohomology
cohomology of groups
spellingShingle foliated bundles
foliated cohomology
equivariant cohomology
cohomology of groups
PEREIRA,M. S.
DOS SANTOS,N. M.
ON THE COHOMOLOGY OF FOLIATED BUNDLES
description We prove a de Rham-like theorem for foliated bundles F ! (M; F )¼ ! B showing that the cohomology H¤( F ) is isomorphicto the equivariant cohomology H¡ ³ eB; C1 (F); ¡ = ¼1 (B)and eB the universal covering of B. When B is an Eilenberg-Mac Lane space K (¡; 1) the cohomology H¤ ( F ) is the cohomology of the ¡-module C1 (F). This gives algebraic models for H¤ ( F ) and geometrial models for the cohomology of the ¡-module C1 (F). Using this isomorphism and a theorem of J. Palis and J.C. Yoccoz on the triviality of centralizers of diffeomorphisms, [14] and [15] we show that H¤( F ) is infinite dimensional for a large class of foliated bundles. Using this isomorphism R. u. Luz computed in [9] the cohomology of the foliated bunddles suspensions of actions of Z P by afine transformations of T Q. AMS (MOS) Subj class: 57R30
author PEREIRA,M. S.
DOS SANTOS,N. M.
author_facet PEREIRA,M. S.
DOS SANTOS,N. M.
author_sort PEREIRA,M. S.
title ON THE COHOMOLOGY OF FOLIATED BUNDLES
title_short ON THE COHOMOLOGY OF FOLIATED BUNDLES
title_full ON THE COHOMOLOGY OF FOLIATED BUNDLES
title_fullStr ON THE COHOMOLOGY OF FOLIATED BUNDLES
title_full_unstemmed ON THE COHOMOLOGY OF FOLIATED BUNDLES
title_sort on the cohomology of foliated bundles
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2002
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172002000200005
work_keys_str_mv AT pereirams onthecohomologyoffoliatedbundles
AT dossantosnm onthecohomologyoffoliatedbundles
_version_ 1718439727191818240