CRITICAL POINT THEOREMS AND APPLICATIONS

We Consider the nonlinear Dirichlet problem: <IMG SRC="http:/fbpe/img/proy/v21n3/img04-01.gif" WIDTH=350 HEIGHT=56> where . omega <FONT FACE=Symbol>Î</FONT> R N is a bounded open domain, F : omega chi R -> R is a carath´eodory function and DuF(x; u) is the partial deri...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: BOUKHRISSE,HAFIDA, MOUSSAOUI,MIMOUN
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2002
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172002000300004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We Consider the nonlinear Dirichlet problem: <IMG SRC="http:/fbpe/img/proy/v21n3/img04-01.gif" WIDTH=350 HEIGHT=56> where . omega <FONT FACE=Symbol>Î</FONT> R N is a bounded open domain, F : omega chi R -> R is a carath´eodory function and DuF(x; u) is the partial derivative of F. We are interested in the resolution of problem (1) when F is concave. Our tool is absolutely variational. Therefore, we state and prove a critical point theorem which generalizes many other results in the literature and leads to the resolution of problem (1). Our theorem allows us to express our assumptions on the nonlinearity in terms of F and not of <FONT FACE=Symbol>Ñ</FONT>F. Also, we note that our theorem doesn’t necessitate the verification of the famous compactness condition introduced by Palais-Smale or any of its variants