CRITICAL POINT THEOREMS AND APPLICATIONS
We Consider the nonlinear Dirichlet problem: <IMG SRC="http:/fbpe/img/proy/v21n3/img04-01.gif" WIDTH=350 HEIGHT=56> where . omega <FONT FACE=Symbol>Î</FONT> R N is a bounded open domain, F : omega chi R -> R is a carath´eodory function and DuF(x; u) is the partial deri...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2002
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172002000300004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172002000300004 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720020003000042003-03-31CRITICAL POINT THEOREMS AND APPLICATIONSBOUKHRISSE,HAFIDAMOUSSAOUI,MIMOUN Critical point theory convexity conditions Elliptic semilinear problem We Consider the nonlinear Dirichlet problem: <IMG SRC="http:/fbpe/img/proy/v21n3/img04-01.gif" WIDTH=350 HEIGHT=56> where . omega <FONT FACE=Symbol>Î</FONT> R N is a bounded open domain, F : omega chi R -> R is a carath´eodory function and DuF(x; u) is the partial derivative of F. We are interested in the resolution of problem (1) when F is concave. Our tool is absolutely variational. Therefore, we state and prove a critical point theorem which generalizes many other results in the literature and leads to the resolution of problem (1). Our theorem allows us to express our assumptions on the nonlinearity in terms of F and not of <FONT FACE=Symbol>Ñ</FONT>F. Also, we note that our theorem doesnt necessitate the verification of the famous compactness condition introduced by Palais-Smale or any of its variantsinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.21 n.3 20022002-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172002000300004en10.4067/S0716-09172002000300004 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Critical point theory convexity conditions Elliptic semilinear problem |
spellingShingle |
Critical point theory convexity conditions Elliptic semilinear problem BOUKHRISSE,HAFIDA MOUSSAOUI,MIMOUN CRITICAL POINT THEOREMS AND APPLICATIONS |
description |
We Consider the nonlinear Dirichlet problem: <IMG SRC="http:/fbpe/img/proy/v21n3/img04-01.gif" WIDTH=350 HEIGHT=56> where . omega <FONT FACE=Symbol>Î</FONT> R N is a bounded open domain, F : omega chi R -> R is a carath´eodory function and DuF(x; u) is the partial derivative of F. We are interested in the resolution of problem (1) when F is concave. Our tool is absolutely variational. Therefore, we state and prove a critical point theorem which generalizes many other results in the literature and leads to the resolution of problem (1). Our theorem allows us to express our assumptions on the nonlinearity in terms of F and not of <FONT FACE=Symbol>Ñ</FONT>F. Also, we note that our theorem doesnt necessitate the verification of the famous compactness condition introduced by Palais-Smale or any of its variants |
author |
BOUKHRISSE,HAFIDA MOUSSAOUI,MIMOUN |
author_facet |
BOUKHRISSE,HAFIDA MOUSSAOUI,MIMOUN |
author_sort |
BOUKHRISSE,HAFIDA |
title |
CRITICAL POINT THEOREMS AND APPLICATIONS |
title_short |
CRITICAL POINT THEOREMS AND APPLICATIONS |
title_full |
CRITICAL POINT THEOREMS AND APPLICATIONS |
title_fullStr |
CRITICAL POINT THEOREMS AND APPLICATIONS |
title_full_unstemmed |
CRITICAL POINT THEOREMS AND APPLICATIONS |
title_sort |
critical point theorems and applications |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2002 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172002000300004 |
work_keys_str_mv |
AT boukhrissehafida criticalpointtheoremsandapplications AT moussaouimimoun criticalpointtheoremsandapplications |
_version_ |
1718439728159653888 |