A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLI’S THEOREM

We show that a non-elementary finitely generated torsion-free func-tion group is uniquely determined by its commutator subgroup. In this way, we obtain a generalization of the results obtained in [2], [3] and [8]. This is well related to Torelli’s theorem for closed Riemann sur-faces.For a general n...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: HIDALGO,RUBÉN
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2003
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172003000200002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172003000200002
record_format dspace
spelling oai:scielo:S0716-091720030002000022003-10-27A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLI’S THEOREMHIDALGO,RUBÉN Kleinian groups Function groups Torelli’s theorem Hyperbolic 3-manifolds We show that a non-elementary finitely generated torsion-free func-tion group is uniquely determined by its commutator subgroup. In this way, we obtain a generalization of the results obtained in [2], [3] and [8]. This is well related to Torelli’s theorem for closed Riemann sur-faces.For a general non-elementary torsion-free Kleinian group the above rigidity property still unknowninfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.22 n.2 20032003-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172003000200002en10.4067/S0716-09172003000200002
institution Scielo Chile
collection Scielo Chile
language English
topic Kleinian groups
Function groups
Torelli’s theorem
Hyperbolic 3-manifolds
spellingShingle Kleinian groups
Function groups
Torelli’s theorem
Hyperbolic 3-manifolds
HIDALGO,RUBÉN
A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLI’S THEOREM
description We show that a non-elementary finitely generated torsion-free func-tion group is uniquely determined by its commutator subgroup. In this way, we obtain a generalization of the results obtained in [2], [3] and [8]. This is well related to Torelli’s theorem for closed Riemann sur-faces.For a general non-elementary torsion-free Kleinian group the above rigidity property still unknown
author HIDALGO,RUBÉN
author_facet HIDALGO,RUBÉN
author_sort HIDALGO,RUBÉN
title A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLI’S THEOREM
title_short A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLI’S THEOREM
title_full A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLI’S THEOREM
title_fullStr A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLI’S THEOREM
title_full_unstemmed A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLI’S THEOREM
title_sort commutator rigidity for function groups and torelli’s theorem
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2003
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172003000200002
work_keys_str_mv AT hidalgoruben acommutatorrigidityforfunctiongroupsandtorellistheorem
AT hidalgoruben commutatorrigidityforfunctiongroupsandtorellistheorem
_version_ 1718439730633244672