A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLIS THEOREM
We show that a non-elementary finitely generated torsion-free func-tion group is uniquely determined by its commutator subgroup. In this way, we obtain a generalization of the results obtained in [2], [3] and [8]. This is well related to Torellis theorem for closed Riemann sur-faces.For a general n...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2003
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172003000200002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172003000200002 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720030002000022003-10-27A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLIS THEOREMHIDALGO,RUBÉN Kleinian groups Function groups Torellis theorem Hyperbolic 3-manifolds We show that a non-elementary finitely generated torsion-free func-tion group is uniquely determined by its commutator subgroup. In this way, we obtain a generalization of the results obtained in [2], [3] and [8]. This is well related to Torellis theorem for closed Riemann sur-faces.For a general non-elementary torsion-free Kleinian group the above rigidity property still unknowninfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.22 n.2 20032003-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172003000200002en10.4067/S0716-09172003000200002 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Kleinian groups Function groups Torellis theorem Hyperbolic 3-manifolds |
spellingShingle |
Kleinian groups Function groups Torellis theorem Hyperbolic 3-manifolds HIDALGO,RUBÉN A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLIS THEOREM |
description |
We show that a non-elementary finitely generated torsion-free func-tion group is uniquely determined by its commutator subgroup. In this way, we obtain a generalization of the results obtained in [2], [3] and [8]. This is well related to Torellis theorem for closed Riemann sur-faces.For a general non-elementary torsion-free Kleinian group the above rigidity property still unknown |
author |
HIDALGO,RUBÉN |
author_facet |
HIDALGO,RUBÉN |
author_sort |
HIDALGO,RUBÉN |
title |
A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLIS THEOREM |
title_short |
A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLIS THEOREM |
title_full |
A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLIS THEOREM |
title_fullStr |
A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLIS THEOREM |
title_full_unstemmed |
A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLIS THEOREM |
title_sort |
commutator rigidity for function groups and torellis theorem |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2003 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172003000200002 |
work_keys_str_mv |
AT hidalgoruben acommutatorrigidityforfunctiongroupsandtorellistheorem AT hidalgoruben commutatorrigidityforfunctiongroupsandtorellistheorem |
_version_ |
1718439730633244672 |