A COMMUTATOR RIGIDITY FOR FUNCTION GROUPS AND TORELLIS THEOREM
We show that a non-elementary finitely generated torsion-free func-tion group is uniquely determined by its commutator subgroup. In this way, we obtain a generalization of the results obtained in [2], [3] and [8]. This is well related to Torellis theorem for closed Riemann sur-faces.For a general n...
Guardado en:
Autor principal: | HIDALGO,RUBÉN |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2003
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172003000200002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Totally Degenerate Extended Kleinian Groups
por: Hidalgo,Rubén A.
Publicado: (2017) -
Existence of solutions for discrete boundary value problems with second order dependence on parameters
por: Guiro,Aboudramane, et al.
Publicado: (2017) -
A general method for to decompose modular multiplicative inverse operators over Group of units
por: Cortés Vega,Luis A.
Publicado: (2018) -
Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions
por: Bagul,Yogesh J., et al.
Publicado: (2019) -
A cryptography method based on hyperbolicbalancing and Lucas-balancing functions
por: Ray,Prasanta Kumar
Publicado: (2020)