DIAGONALS AND EIGENVALUES OF SUMS OF HERMITIAN MATRICES: EXTREME CASES

There are well known inequalities for Hermitian matrices A and B that relate the diagonal entries of A+B to the eigenvalues of A and B. These inequalities are easily extended to more general inequalities in the case where the matrices A and B are perturbed through con-gruences of the form UAU*+ V BV...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: MIRANDA,HÉCTOR
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2003
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172003000200003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:There are well known inequalities for Hermitian matrices A and B that relate the diagonal entries of A+B to the eigenvalues of A and B. These inequalities are easily extended to more general inequalities in the case where the matrices A and B are perturbed through con-gruences of the form UAU*+ V BV *; where U and V are arbitrary unitary matrices, or to sums of more than two matrices. The extremal cases where these inequalities and some generalizations become equal-ities are examined here